Project description:Listeria innocua is widespread in the environment and in food. This species has to date never been described in association with human disease. We report a case of fatal bacteremia caused by L. innocua in a 62-year-old patient.
Project description:We characterized recombinant Lin1839 protein (Lin1839r) belonging to glycoside hydrolase family 94 from Listeria innocua. Lin1839r catalyzed the synthesis of a series of 1,2-β-oligoglucans (Sopn: n denotes degree of polymerization) using sophorose (Sop2) as the acceptor and α-D-glucose 1-phosphate (Glc1P) as the donor. Lin1839r recognized glucose as a very weak acceptor substrate to form polymeric 1,2-β-glucan. The degree of polymerization of the 1,2-β-glucan gradually decreased with long-term incubation to generate a series of Sopns. Kinetic analysis of the phosphorolytic reaction towards sophorotriose revealed that Lin1839r followed a sequential Bi Bi mechanism. The kinetic parameters of the phosphorolysis of sophorotetraose and sophoropentaose were similar to those of sophorotriose, although the enzyme did not exhibit significant phosphorolytic activity on Sop2. These results indicate that the Lin1839 protein is a novel inverting phosphorylase that catalyzes reversible phosphorolysis of 1,2-β-glucan with a degree of polymerization of ≥3. We propose 1,2-β-oligoglucan: phosphate α-glucosyltransferase as the systematic name and 1,2-β-oligoglucan phosphorylase as the short name for this Lin1839 protein.
Project description:Identification of bona fide Listeria isolates into the six species of the genus normally requires only a few tests. Aberrant isolates do occur, but even then only one or two extra confirmatory tests are generally needed for identification to species level. We have discovered a hemolytic-positive, rhamnose and xylose fermentation-negative Listeria strain with surprising recalcitrance to identification to the species level due to contradictory results in standard confirmatory tests. The issue had to be resolved by using total DNA-DNA hybridization testing and then confirmed by further specific PCR-based tests including a Listeria microarray assay. The results show that this isolate is indeed a novel one. Its discovery provides the first fully documented instance of a hemolytic Listeria innocua strain. This species, by definition, is typically nonhemolytic. The L. innocua isolate contains all the members of the PrfA-regulated virulence gene cluster (Listeria pathogenicity island 1) of L. monocytogenes. It is avirulent in the mouse pathogenicity test. Avirulence is likely at least partly due to the absence of the L. monocytogenes-specific allele of iap, as well as the absence of inlA, inlB, inlC, and daaA. At least two of the virulence cluster genes, hly and plcA, which encode the L. monocytogenes hemolysin (listeriolysin O) and inositol-specific phospholipase C, respectively, are phenotypically expressed in this L. innocua strain. The detection by PCR assays of specific L. innocua genes (lin0198, lin0372, lin0419, lin0558, lin1068, lin1073, lin1074, lin2454, and lin2693) and noncoding intergenic regions (lin0454-lin0455 and nadA-lin2134) in the strain is consistent with its L. innocua DNA-DNA hybridization identity. Additional distinctly different hemolytic L. innocua strains were also studied.
Project description:Listeria innocua is considered a nonpathogenic Listeria species. Natural atypical hemolytic L. innocua isolates have been reported but have not been characterized in detail. Here, we report the genomic and functional characterization of representative isolates from the two known natural hemolytic L. innocua clades. Whole-genome sequencing confirmed the presence of Listeria pathogenicity islands (LIPI) characteristic of Listeria monocytogenes species. Functional assays showed that LIPI-1 and inlA genes are transcribed, and the corresponding gene products are expressed and functional. Using in vitro and in vivo assays, we show that atypical hemolytic L. innocua is virulent, can actively cross the intestinal epithelium, and spreads systemically to the liver and spleen, albeit to a lesser degree than the reference L. monocytogenes EGDe strain. Although human exposure to hemolytic L. innocua is likely rare, these findings are important for food safety and public health. The presence of virulence traits in some L. innocua clades supports the existence of a common virulent ancestor of L. monocytogenes and L. innocua.