Project description:Stress survival tactics in bacteria utilize the up- and down-regulation of stress response genes. In bacteria that lack classical stress response genes for oxidative stress, other cellular systems can be used for cell survival. We used custom microarrays to study the regulation of genes in Bifidobacterium animalis ssp. lactis strains to oxidative stress to elucidate novel stress response mechanisms.
Project description:Aeromonas are ubiquitous inhabitants of both natural and anthropogenic aquatic ecosystems. Occasionally, Aeromonas also grows in drinking water distribution systems, which is highly undesired due to the pathogenicity of some members of this genus. The growth of Aeromonas in such highly oligotrophic environments is currently poorly understood. Possible nutrient sources are biopolymers. For example, chitin is the structural component of the exoskeleton of insects, some invertebrates and the cell walls of fungi which makes it one of the most abundant carbon and nitrogen sources in nature. In this study we demonstrate the ability of two Aeromonas strains, Aeromonas bestiarum and Aeromonas rivuli to efficiently grow on chitin. The secreted proteins confirm the presence of the functional hydrolytic enzymes that enable the efficient degradation and utilization of this abundant biopolymer. Further quantitative cellular proteomic study unravels the remarkable reorganization of the Aeromonas metabolism when switching to chitin as sole carbon and nitrogen source. This proves that Aeromonas is not only chitinolytic but also a chitinotrophic microorganism.
Project description:Aeromonas caviae has been associated with human gastrointestinal disease. Strains of this species typically lack virulence factors (VFs) such as enterotoxins and hemolysins that are produced by other human pathogens of the Aeromonas genus. Microarray profiling of murine small intestinal extracts, 24 hours after oral infection with an A. caviae strain, provides evidence of a Th1 type immune response. A large number of gamma-interferon (γ-IFN) induced genes are up-regulated as well as several tumor necrosis factor-alpha (TNF-α) transcripts. A. caviae has always been considered an opportunistic pathogen because it lacks obvious virulence factors. This current effort suggests A. caviae colonizes murine intestinal tract and causes what has been described by others as a dysregulatory cytokine response leading to an irritable bowel-like syndrome. This response would explain why a number of diarrheal waterborne outbreaks have been attributed to A. caviae even though it lacks obvious enteropathogenic properties. Keywords: Aeromonas caviae, infection, disease mechanism, TH1 resposne
Project description:Antimicrobial resistance (AMR) has become a serious public and economic threat. The rate of bacteria acquiring AMR surpasses the rate of new antibiotics discovery, projecting more deadly AMR infections in the future. The Pathogen Box is an open-source library of drug-like compounds that can be screened for antibiotic activity. We have screened molecules of the Pathogen Box against Vibrio cholerae, the cholera-causing pathogen, and successfully identified two compounds, MMV687807 and MMV675968, that inhibit growth. RNA-seq analyses of V. cholerae after incubation with each compound revealed that both compounds affect cellular functions on multiple levels including carbon metabolism, iron homeostasis, and biofilm formation. In addition, whole-genome sequencing analysis of spontaneous resistance mutants identified an efflux system that confers resistance to MMV687807. We also identified that the dihydrofolate reductase is the likely target of MMV675968 suggesting it acts as an analog of trimethoprim but with a minimum inhibitory concentration (MIC) 14-fold lower than trimethoprim in molar concentration. In summary, these two compounds that effectively inhibit V. cholerae and other bacteria may lead to the development of new antibiotics for better treatment of the cholera disease.
Project description:Aeromonas salmonicida is a fish pathogen that causes furunculosis. Virulent strains of this bacterium are able to infect salmonid macrophages and survive within them, although mechanisms favouring intracellular survival are not completely understood. It is known that A. salmonicida cultured in vivo in the peritoneal cavity of the host undergoes changes in gene expression and surface architecture compared with cultures grown in vitro in broth. Therefore, in this study, the macrophage responses to A. salmonicida grown in vivo and in vitro were compared. Enriched macrophages isolated from head kidney of Atlantic salmon (Salmo salar) were infected in vitro in 96-well microtitre dishes and changes in gene expression during the infection process were monitored using a custom Atlantic salmon cDNA microarray. A. salmonicida cultures grown in tryptic soy broth and in peritoneal implants were used to infect the macrophages. The macrophages were harvested at 0.5, 1.0 and 2.0 h after addition of the bacteria to the medium. Significant changes in gene expression were evident by microarray analysis at 2.0 h post-infection in macrophages infected with broth-grown and implant-grown bacteria; however, qPCR analysis revealed earlier up-regulation of JunB and TNF-alpha in macrophages exposed to the implant-grown bacteria. Up-regulation of those genes and others is consistent with the effects of extracellular products of aeromonad bacteria on macrophages and also suggests initiation of the innate immune response. Keywords: time course
Project description:Stress survival tactics in bacteria utilize the up- and down-regulation of stress response genes. In bacteria that lack classical stress response genes for oxidative stress, other cellular systems can be used for cell survival. We used custom microarrays to study the regulation of genes in Bifidobacterium animalis ssp. lactis strains to oxidative stress to elucidate novel stress response mechanisms. Bifidobacterium cells were grown to late log phase then harvested and exposed to a sub-lethal level of hydrogen peroxide. Samples were taken at 5 and 20 mins for RNA extraction and hybridization on Affymetrix microarrays. Controls were prepared for each time point which recieved no hydrogen peroxide treatment.
Project description:Aeromonas salmonicida is a fish pathogen that causes furunculosis. Virulent strains of this bacterium are able to infect salmonid macrophages and survive within them, although mechanisms favouring intracellular survival are not completely understood. It is known that A. salmonicida cultured in vivo in the peritoneal cavity of the host undergoes changes in gene expression and surface architecture compared with cultures grown in vitro in broth. Therefore, in this study, the macrophage responses to A. salmonicida grown in vivo and in vitro were compared. Enriched macrophages isolated from head kidney of Atlantic salmon (Salmo salar) were infected in vitro in 96-well microtitre dishes and changes in gene expression during the infection process were monitored using a custom Atlantic salmon cDNA microarray. A. salmonicida cultures grown in tryptic soy broth and in peritoneal implants were used to infect the macrophages. The macrophages were harvested at 0.5, 1.0 and 2.0 h after addition of the bacteria to the medium. Significant changes in gene expression were evident by microarray analysis at 2.0 h post-infection in macrophages infected with broth-grown and implant-grown bacteria; however, qPCR analysis revealed earlier up-regulation of JunB and TNF-alpha in macrophages exposed to the implant-grown bacteria. Up-regulation of those genes and others is consistent with the effects of extracellular products of aeromonad bacteria on macrophages and also suggests initiation of the innate immune response. Keywords: time course Enriched macrophages from 24 responder fish that showed positive respiratory burst in response to phorbol myristate acetate were plated in individual wells of 96-well flat-bottom polystyrene tissue culture plates. A. salmonicida were added to the macrophages, and incubated for 0.5, 1.0 or 2.0 h. Control wells received 10 ul of HBSS. Three replicate infections were performed for each type of bacteria. Hybridizations were carried out in duplicate, reversing the fluors for each sample on the second chip.
Project description:Background Aeromonas salmonicida subsp. salmonicida, the etiologic agent of furunculosis, is a major pathogen of fisheries worldwide. Despite the identification of several virulence factors the pathogenesis is still poorly understood. We have used high-throughput proteomics to display the differences between in vitro secretome of A. salmonicida wild-type (wt, hypervirulent, JF5054) and T3SS-deficient (isogenic DeltaascV, extremely low-virulent, JF2747) strains in exponential (GP) and stationary (SP) phases of growth. Results Among the different experimental conditions we obtained semi-quantitative values for a total of 2136 A. salmonicida proteins. Proteins of specific A. salmonicida species were proportionally less detected than proteins common to the Aeromonas genus or those shared with other Aeromonas species, suggesting that in vitro growth did not induce the expression of these genes. Four detected proteins which are unidentified in the genome of reference strains of A. salmonicida were homologous to components of the conjugative T4SS of A. hydrophila pRA1 plasmid. Polypeptides of three proteins which are specific to the 01-B526 strain were also discovered. In supernatants (SNs), the number of detected proteins was higher in SP (326 for wt vs 329 for mutant) than in GP (275 for wt vs 263 for mutant). In pellets, the number of identified proteins (a total of 1536) was approximately the same between GP and SP. Numerous highly conserved cytoplasmic proteins were present in A. salmonicida SNs (mainly EF-Tu, EF-G, EF-P, EF-Ts, TypA, AlaS, ribosomal proteins, HtpG, DnaK, peptidyl-prolyl cis-trans isomerases, GAPDH, Enolase, FbaA, TpiA, Pgk, TktA, AckA, AcnB, Mdh, AhpC, Tpx, SodB and PNPase), and several evidences support the theory that their extracellular localization was not the result of cell lysis. According to the Cluster of Orthologous Groups classification, 29% of excreted proteins in A. salmonicida SNs were currently poorly characterized. Conclusions In this part of our work we elucidated the whole in vitro exoproteome of hypervirulent A. salmonicida subsp. salmonicida and showed the secretion of several highly conserved cytoplasmic proteins with putative moonlighting functions and roles in virulence. All together, our results offer new information about the pathogenesis of furunculosis and point out potential candidates for vaccine development.