Project description:Profiles of two major acyl-modifications, lysine acetylation and succinylation, under L-glutamate-producting and non-producing conditions in Corynebacterium glutamicum, which is industrially utilized for amino acid fermentation, was analyzed. During glutamate overproduction induced by Tween 40, global lysine acetylation was decreased, while lysine succinylation was increased. A label-free semi-quantitative proteomic analysis identified 591 acetylated proteins with 1,509 unique acetylation sites and 297 succinylated proteins with 790 unique succinylation sites. Lysine acetylation and succinylation targeted most enzymes in the central carbon metabolic pathways that are directly related to glutamate production, including the 2-oxoglutarate dehydrogenase complex (ODHC), a key enzyme for glutamate overproduction.
Project description:Ciprofloxacin, an inhibitor of bacterial gyrase and topoisomerase IV, was shown to inhibit growth of C. glutamicum with concomitant excretion of L-glutamate. C. glutamicum strains overproducing L-lysine, L-arginine, L-ornithine, and putrescine, respectively, produced L-glutamate instead of the desired amino acid when exposed to ciprofloxacin. Even in the absence of the putative L-glutamate exporter gene yggB, ciprofloxacin effectively triggered L-glutamate production. When C. glutamicum wild type was cultivated under nitrogen-limiting conditions, 2-oxoglutarate rather than L-glutamate was produced as consequence of exposure to ciprofloxacin. Transcriptome analysis revealed that ciprofloxacin increased RNA levels of genes involved in DNA synthesis, repair and modification. Enzyme assays showed that 2-oxoglutarate dehydrogenase activity was decreased due to ciprofloxacin addition. Here, it was shown for the first time that production of L-glutamate by C. glutamicum may be triggered by an inhibitor of DNA synthesis and L-glutamate titers of up to 37 ± 1 mM and a substrate specific L-glutamate yield of 0.13 g/g were reached.
Project description:Strains: non-producing refernece strain pXMJ19 (CR099 pXMJ19; Goldbeck et al., 2021) and Pediocin-producer pxMJ19 ped (CR099 pXMJ19 Ptac pedACDCg, Goldbeck et al., 2021) Pediocin-producing and non-producing strains of Corynebacterium glutamicum were compared in a whole genome microarray analysis setup in order to identify potential strain optimization targets
Project description:The influence of different nitrogen sources on transcriptome of Purple non sulfur bacterium R. Capsulatus was investigated by comparing expression profile on 5mM ammonium chloride and 2 mM glutamate. Carbon source was 40mM acetate on both conditions. To study the effect of different acetate concentrations, 40mM and 80mM acetate were used with 2 mM glutamate as nitrogen source.
Project description:Background: Methanol is present in most ecosystems and may also occur in industrial applications, e.g. as an impurity of carbon sources such as technical glycerol. Methanol often inhibits growth of bacteria, thus, methanol tolerance may limit fermentative production processes. Results: The methanol tolerance of the amino acid producing soil bacterium Corynebacterium glutamicum was improved by genetic adaption in the presence of methanol. The resulting strain Tol1 exhibited significantly increased growth rates in the presence of up to 1 M methanol. However, neither transcriptional changes nor increased enzyme activities of the linear methanol oxidation pathway were observed, which was in accordance with the finding that tolerance to the downstream metabolites formaldehyde and formate was not improved. Genome sequence analysis of strain Tol1 revealed two point mutations potentially relevant to enhanced methanol tolerance: one leading to the amino acid exchange A165T of O-acetylhomoserine sulfhydrolase MetY and the other leading to shortened CoA transferase Cat (Q342*). Introduction of either mutation into the genome of C. glutamicum wild type increased methanol tolerance and introduction of both mutations into C. glutamicum was sufficient to achieve methanol tolerance almost indistinguishable from that of strain Tol1. Conclusion: The methanol tolerance of C. glutamicum can be increased by two point mutations leading to amino acid exchange of O-acetylhomoserine sulfhydrolase MetY and shortened CoA transferase Cat. Introduction of these mutations into producer strains may be helpful when using carbon sources containing methanol as component or impurity.
Project description:Background: Methanol is present in most ecosystems and may also occur in industrial applications, e.g. as an impurity of carbon sources such as technical glycerol. Methanol often inhibits growth of bacteria, thus, methanol tolerance may limit fermentative production processes. Results: The methanol tolerance of the amino acid producing soil bacterium Corynebacterium glutamicum was improved by genetic adaption in the presence of methanol. The resulting strain Tol1 exhibited significantly increased growth rates in the presence of up to 1 M methanol. However, neither transcriptional changes nor increased enzyme activities of the linear methanol oxidation pathway were observed, which was in accordance with the finding that tolerance to the downstream metabolites formaldehyde and formate was not improved. Genome sequence analysis of strain Tol1 revealed two point mutations potentially relevant to enhanced methanol tolerance: one leading to the amino acid exchange A165T of O-acetylhomoserine sulfhydrolase MetY and the other leading to shortened CoA transferase Cat (Q342*). Introduction of either mutation into the genome of C. glutamicum wild type increased methanol tolerance and introduction of both mutations into C. glutamicum was sufficient to achieve methanol tolerance almost indistinguishable from that of strain Tol1. Conclusion: The methanol tolerance of C. glutamicum can be increased by two point mutations leading to amino acid exchange of O-acetylhomoserine sulfhydrolase MetY and shortened CoA transferase Cat. Introduction of these mutations into producer strains may be helpful when using carbon sources containing methanol as component or impurity. The gene expression was analyzed in the methanol tolerant strain Tol1 in comparison to the C. glutamicumWT. Direct comparison in LB complex medium and analysis of expression response to methanol addition in mCGXII minimal medium with 100 mM glucose.