Project description:The giant ciliate Stentor coeruleus is a classical model system for studying regeneration and morphogenesis at the level of a single cell. The anterior of the cell is marked by an array of cilia, known as the oral apparatus, which can be induced to shed and regenerate in a series of reproducible morphological steps, previously shown to require transcription. If a cell is cut in half, each half will regenerate an intact cell, including a new oral apparatus in the posterior half. We used RNAseq to assay the dynamic changes in Stentor’s transcriptome during regeneration, after both oral apparatus shedding and bisection, allowing us to identify distinct temporal waves of gene expression. By comparing transcriptional profiles of different regeneration events in the same species, we were able to classify regeneration genes into groups based on their potential role for regeneration in distinct cell regeneration paradigms, and provides new insight into how a single cell can coordinate complex morphogenetic pathways to regenerate missing structures.
Project description:Although learning is often viewed as a unique feature of organisms with complex nervous systems, single-celled organisms also demonstrate basic forms of learning. The giant ciliate Stentor coeruleus responds to mechanical stimuli by contracting into a compact shape, presumably as a defense mechanism. When a Stentor cell is repeatedly stimulated at a constant level of force, it will learn to ignore that stimulus but will still respond to stronger stimuli. Prior studies of habituation in Stentor reported a graded response, suggesting that cells transition through a continuous range of response probabilities. By analyzing single cells using an automated apparatus to deliver calibrated stimuli, we find that habituation occurs via a single step-like switch in contraction probability within each cell, with the graded response in a population arising from the random distribution of switching times in individual cells. This step-like response allows Stentor behavior to be represented by a simple two-state model whose parameters can be estimated from experimental measurements. We find that transition rates depend on stimulus force and also on the time between stimuli. The ability to measure the behavior of the same cell to the same stimulus allowed us to quantify the functional heterogeneity among single cells. Together, our results suggest that the behavior of Stentor is governed by a two-state stochastic machine whose transition rates are sensitive to the time series properties of the input stimuli.
Project description:The phenomenon of ciliary coordination has garnered increasing attention in recent decades and multiple theories have been proposed to explain its occurrence in different biological systems. While hydrodynamic interactions are thought to dictate the large-scale coordinated activity of epithelial cilia for fluid transport, it is rather basal coupling that accounts for synchronous swimming gaits in model microeukaryotes such as Chlamydomonas. Unicellular ciliates present a fascinating yet understudied context in which coordination is found to persist in ciliary arrays positioned across millimetre scales on the same cell. Here, we focus on the ciliate Stentor coeruleus, chosen for its large size, complex ciliary organization, and capacity for cellular regeneration. These large protists exhibit ciliary differentiation between cortical rows of short body cilia used for swimming, and an anterior ring of longer, fused cilia called the membranellar band (MB). The oral cilia in the MB beat metachronously to produce strong feeding currents. Remarkably, upon injury, the MB can be shed and regenerated de novo. Here, we follow and track this developmental sequence in its entirety to elucidate the emergence of coordinated ciliary beating: from band formation, elongation, curling and final migration towards the cell anterior. We reveal a complex interplay between hydrodynamics and ciliary restructuring in Stentor, and highlight for the first time the importance of a ring-like topology for achieving long-range metachronism in ciliated structures. This article is part of the Theo Murphy meeting issue 'Unity and diversity of cilia in locomotion and transport'.
Project description:The giant, single-celled organism Stentor coeruleus has a long history as a model system for studying pattern formation and regeneration in single cells. Stentor [1, 2] is a heterotrichous ciliate distantly related to familiar ciliate models, such as Tetrahymena or Paramecium. The primary distinguishing feature of Stentor is its incredible size: a single cell is 1 mm long. Early developmental biologists, including T.H. Morgan [3], were attracted to the system because of its regenerative abilities-if large portions of a cell are surgically removed, the remnant reorganizes into a normal-looking but smaller cell with correct proportionality [2, 3]. These biologists were also drawn to Stentor because it exhibits a rich repertoire of behaviors, including light avoidance, mechanosensitive contraction, food selection, and even the ability to habituate to touch, a simple form of learning usually seen in higher organisms [4]. While early microsurgical approaches demonstrated a startling array of regenerative and morphogenetic processes in this single-celled organism, Stentor was never developed as a molecular model system. We report the sequencing of the Stentor coeruleus macronuclear genome and reveal key features of the genome. First, we find that Stentor uses the standard genetic code, suggesting that ciliate-specific genetic codes arose after Stentor branched from other ciliates. We also discover that ploidy correlates with Stentor's cell size. Finally, in the Stentor genome, we discover the smallest spliceosomal introns reported for any species. The sequenced genome opens the door to molecular analysis of single-cell regeneration in Stentor.
Project description:Cellular components are non-randomly arranged with respect to the shape and polarity of the whole cell.1-4 Patterning within cells can extend down to the level of individual proteins and mRNA.5,6 But how much of the proteome is actually localized with respect to cell polarity axes? Proteomics combined with cellular fractionation7-11 has shown that most proteins localize to one or more organelles but does not tell us how many proteins have a polarized localization with respect to the large-scale polarity axes of the intact cell. Genome-wide localization studies in yeast12-15 found that only a few percent of proteins have a localized position relative to the cell polarity axis defined by sites of polarized cell growth. Here, we describe an approach for analyzing protein distribution within a cell with a visibly obvious global patterning-the giant ciliate Stentor coeruleus.16,17 Ciliates, including Stentor, have highly polarized cell shapes with visible surface patterning.1,18 A Stentor cell is roughly 2 mm long, allowing a "proteomic dissection" in which microsurgery is used to separate cellular fragments along the anterior-posterior axis, followed by comparative proteomic analysis. In our analysis, 25% of the proteome, including signaling proteins, centrin/SFI proteins, and GAS2 orthologs, shows a polarized location along the cell's anterior-posterior axis. We conclude that a large proportion of all proteins are polarized with respect to global cell polarity axes and that proteomic dissection provides a simple and effective approach for spatial proteomics.