Project description:To determine the difference in gene expression of SNJ2 genes with and without MMC treatment, Natrinema sp. J7-1 was incubated to middle exponential phase (OD600=0.6-0.8) in Halo-2 medium and treated with MMC
Project description:The halophilic archaea (haloarchaea) live in hyersaline environments such as salt lakes, salt ponds and marine salterns. To cope with the salt stress conditions, haloarchaea have developed two fundamentally different strategies: the "salt-in" strategy and the "compatible-solute" strategy. Although investigation of the molecular mechanisms underlying the tolerance to high salt concentrations has made outstanding achievements, experimental study from the aspect of transcription is rare. In the present study, we monitored cellular physiology of Natrinema sp. J7-2 cells incubated in different salinity media (15%, 25% and 30% NaCl) from several aspects, such as cellular morphology, growth, global transcriptome and the content of intracellular free amino acids. The results showed that the cells were polymorphic and fragile at a low salt concentration (15% NaCl) but had a long, slender rod shape at high salt concentrations (25% and 30% NaCl). The cells grew best in 25% NaCl, mediocre in 30% NaCl and struggled in 15% NaCl. An RNA-seq analysis revealed differentially expressed genes (DEGs) in various salinity media. A total of 1,148 genes were differentially expressed, consisting of 719 DEGs (348 up-regulated and 371 down-regulated genes) between cells in 15% vs 25% NaCl, and 733 DEGs (521 up-regulated and 212 down-regulated genes) between cells in 25% vs 30% NaCl. Moreover, 304 genes were commonly differentially expressed in both 15% vs 25% and 25% vs30% NaCl. The DEGs were enriched in different KEGG metabolic pathways, such as amino acids, glycerolipid, ribosome, nitrogen, protoporphyrin, porphyrin and porhiniods. The intracellular predominant free amino acids consisted of the glutamate family (Glu, Arg and Pro), aspartate family (Asp) and aromatic amino acids (Phe and Trp), especially Glu and Asp.
Project description:Halolysin SptA from haloarchaeon Natrinema sp. J7 consists of a subtilisin-like catalytic domain and a C-terminal extension (CTE) containing two cysteine residues. In this report, we have investigated the function of the CTE using recombinant enzymes expressed in Haloferax volcanii WFD11. Deletion of the CTE greatly reduced but did not abolish protease activity, which suggests that the CTE is not essential for enzyme folding. Mutational analysis suggests that residues Cys303 and Cys338 within the CTE form a disulfide bond that make this domain resistant to autocleavage and proteolysis under hypotonic conditions. Characterization of full-length and CTE-truncation enzymes indicates the CTE not only confers extra stability to the enzyme but also assists enzyme activity on protein substrates by facilitating binding at high salinities. Interestingly, homology modeling of the CTE yields a ?-jelly roll-like structure similar to those seen in Claudin-binding domain of Clostridium perfringens enterotoxin (clostridial C-CPE) and collagen binding domain (CBD), and the CTE also possesses collagen-binding activity, making it a potential candidate as an anchoring unit in drug delivery systems.