Project description:Current drugs that directly target pro-angiogenic factors to inhibit or reverse corneal neovascularization, the major sight-threatening pathology caused by angiogenic stimuli, require multiple rounds of administration and have limited efficacies. Here we report the profiling of anti-angiogenic corneal microRNAs (miRNAs), and a framework that employs discovered miRNAs as biotherapies deliverable by recombinant adeno-associated viruses (rAAVs). By querying differentially expressed miRNAs in neovascularized mouse corneas induced by alkali-burn, we have revealed 39 miRNAs that are predicted to target more than 5,500 differentially expressed corneal mRNAs. Among these corneal miRNAs, we selected miR-204 and assessed its efficacy as a therapeutic miRNA in injured corneas. Our results show that delivery of miR-204 by rAAV is efficacious and safe for mitigating corneal NV. Overall, our work demonstrates the discovery of therapeutic miRNAs in corneal disorders and their translation into viable clinical vectors.
Project description:Current drugs that directly target pro-angiogenic factors to inhibit or reverse corneal neovascularization, the major sight-threatening pathology caused by angiogenic stimuli, require multiple rounds of administration and have limited efficacies. Here we report the profiling of anti-angiogenic corneal microRNAs (miRNAs), and a framework that employs discovered miRNAs as biotherapies deliverable by recombinant adeno-associated viruses (rAAVs). By querying differentially expressed miRNAs in neovascularized mouse corneas induced by alkali-burn, we have revealed 39 miRNAs that are predicted to target more than 5,500 differentially expressed corneal mRNAs. Among these corneal miRNAs, we selected miR-204 and assessed its efficacy as a therapeutic miRNA in injured corneas. Our results show that delivery of miR-204 by rAAV is efficacious and safe for mitigating corneal NV. Overall, our work demonstrates the discovery of therapeutic miRNAs in corneal disorders and their translation into viable clinical vectors.
Project description:microRNAs regulate cardiac hypertrophy development, which predicts the risk of heart failure. Here we investigate the role of microRNA-204-5p (miR-204) in developing cardiac hypertrophy and cardiac dysfunction following transaortic constriction. To determine the role of miR-204, we determined the transcriptomic profile of hearts following transaortic constriction.
Project description:Mechanisms underlying exercise induced insulin sensitization are of interest as exercise is a clinically critical option as a lifestyle intervention for diabetic patients. Some of microRNAs (miRNAs), which can be secreted from skeletal muscle after exercise, regulate insulin sensitivity and are used for diagnostic marker for diabetic patients. MiR-204 is well-known for its involvement in development, cancer, and metabolism. However, it is still unknown whether miR-204 associates with exerciseinduced glycemic control. In preliminary data, we found that endurance exercise of mice increases miR-204 expression levels in skeletal muscle. In chronic exercise mice model, miR-204 expression levels were increased with glycolytic enzymes in skeletal muscle. When hypoxia induced hypoxia inducible factor 1 alpha (HIF1α), miR-204 expression levels were increased. HIF1α overexpression also increased miR-204 expression levels. To corroborate the causality between miR-204 and glycolysis, miR-204 mimic was introduced to myoblast cell line, C2C12 myoblast cell line. After exposure to miR-204 mimic, C2C12 cells could increase the glycolysis rate measured by extracellular acidification rate. miR-204 mimics also increased mRNA expression levels of glycolytic enzymes. In vivo intravenous miR-204 administration to mice also increased the glucose clearance rate after refeeding of mice. MiR-204 increased blood glucose surge on earlier point of refeeding but promoted the blood glucose lowering on later point of refeeding. Skeletal muscle glycolytic enzymes were increased in mRNA expression levels by miR-204 injection. This finding suggests the novel physiological role of miR-204 in skeletal muscle glycolysis where insulin action is limited.
Project description:Using the highly sensitive miRNA array, we screened 220 microRNAs abundant in physiological left ventricular hypertrophy (LVH) and we explored the functions of these miRNAs in the cardiac tissue by Gene Ontology and Kyoto Encyclopedia of Genes annotation. miRNAs showed a high score in the pathway enriched in autophagy. Moreover, the expression levels of miR-26b-5p, miR-204-5p, and miR-497-3p showed an obvious increase in rat hearts. Adenovirus-mediated overexpression of miR-26b-5p, miR-204-5p, and miR-497-3p markedly attenuated IGF-1-induced hypertrophy in H9C2 cells by suppressing autophagy. Furthermore, miR-26b-5p, miR-204-5p, and miR-497-3p attenuated autophagy in H9C2 cells through targeting ULK1, LC3B and Beclin 1, respectively. Taken together, our results demonstrate that swimming exercise induced physiological LVH, at least in part, by modulating the microRNA–autophagy axis, and that miR-26b-5p, miR-204-5p, and miR-497-3p may help distinguish physiological and pathological LVH.
Project description:The deregulation of microRNAs (miRNAs) has been demonstrated to be involved in tumor angiogenesis and offers opportunities for a new therapeutic approach. However, effective miRNA delivery systems are needed for such approaches to be successful. In this study, miRNA profiling of patient data sets, along with in vitro and in vivo experiments, revealed that miR-204-5p could promote angiogenesis in ovarian tumors through THBS1. To identify potential molecular mechanisms by which miR-204-5p exerts its pro-angiogenic effects, we performed a gene expression microarray of HeyA8-MDR cells following treatment with miR-204-5p-inh.
Project description:The aim of this study is to discover genes regulated by miR-204. Differential gene expression in HEK-293 cells transfected with miR-204-mimic compared to HEK-293 cells transfected with control oligo (HEK-293 control) was analyzed using the Agilent Human Whole Genome 4x44K gene expression array (Agilent Technologies, Santa Clara, CA). HEK-293 cells were transfected with either miR-204 or a control, and gene expression was analyzed using the Agilent Human Whole Genome 4x44K array. A dye-swap was performed.
Project description:Pulmonary arterial hypertension (PAH) is a vascular remodeling disease characterized by enhanced pulmonary artery smooth muscle cell (PASMC) proliferation and suppressed apoptosis. Downregulation of the BMPR2 gene along with activation of the transcription factor NFAT have been implicated in the maintenance of pro-proliferative and anti-apoptotic stages of cells. Since an increasing number of microRNAs have been implicated in the regulation of genes specifically important for cell proliferation and apoptosis, we hypothesized that microRNAs might be associated with these cellular features in the etiology of PAH. We demonstrate that downregulation of one such microRNA (miR-204) in human PAH-PASMC promotes the activation of an Src/STAT3/NFAT axis that increases PAH-PASMC proliferation and their resistance to apoptosis. Stimulation experiments using the pro-PAH factors (PDGF, endothelin-1 and angiotensin II) and time course analysis in experimental PAH show that STAT3 activation leads to miR-204 downregulation, thereby activating an Src-dependent positive feedback loop sustaining STAT3 and activating NFAT. More importantly, restoring miR-204 expression decreases proliferation and resistance to apoptosis in human and in an experimental PAH model. Taken together, our study uncovers a new STAT3-miR-204-Src/STAT3/NFAT axis that links the STAT3-dependent downregulation of BMPR2 with the NFAT-mediated pro-proliferative and anti-apoptotic phenotype observed in PAH. Our data point toward a novel potential strategy for treating patients with PAH. Comparative expression profiling of PAH versus healthy patients to evaluate the modulated genes in the disease. Following the demonstration of the downregulation of miR-204 in PAH we want to investigate the effect of the inhibition (using antagomir) of miR-204 expression in PASMC cells.