Project description:The presence of anti-microbial phenolic compounds, such as the model compound ferulic acid, in biomass hydrolysates poses significant challenges to the widespread use of biomass in conjunction with whole cell biocatalysis or fermentation. Currently, these inhibitory compounds must be removed through additional downstream processing to create feedstock suitable for most industrially important microbial strains. This study explores the high ferulic acid tolerance in Lactobacillus brevis (L. brevis), a lactic acid bacteria often found in fermentation processes, by global transcriptional response analysis. The transcriptional profile of L. brevis under ferulic acid stress reveals that the presence of ferulic acid primarily triggers the expression of membrane proteins to counteract ferulic acid induced changes in membrane fluidity and ion leakage, in the midst of a generalized stress response. Several promising routes for understanding phenolic acid tolerance have been identified based upon these findings. These insights may be used to guide further engineering of model industrial organisms to better tolerate phenolic compounds in processed biomass.
Project description:Purpose: High γ-aminobutyric acid (GABA)-producing Levilactobacillus brevis strain NPS-QW 145 along with Streptococcus thermophilus (one of the two starter bacteria used to make yogurt for its proteolytic activity) to enhance GABA production in milk. But a mechanistic understanding on how Levilactobacillus brevis cooperated with S. thermophilus to stimulate GABA production has been lacking. Method: Metatranscriptomic analyses combined with peptidomics were carried out to unravel the casein and lactose utilization patterns during milk fermentation with the co-culture. Results: We found particular peptides hydrolyzed by S. thermophilus 1275 were transported and biodegraded with peptidase in Lb. brevis 145 to meet the growth needs of the latter. In addition, amino acid synthesis and metabolism in Lb. brevis 145 were also activated to further support its growth. Glucose, as a result of lactose hydrolysis by S. thermophilus 1275, but not available lactose in milk, was outcompeted by Lb. brevis 145 as a main carbon source for glycolysis to produce ATP.In the stationary phase, under the acidic condition due to accumulation of lactic acid produced by S. thermophilus 1275, genes expression involved in pyridoxal phosphate (coenzyme of glutamic acid decarboxylase) metabolism and glutamic acid decarboxylase (Gad) in Lb. brevis 145 were induced for GABA production.
Project description:The presence of anti-microbial phenolic compounds, such as the model compound ferulic acid, in biomass hydrolysates poses significant challenges to the widespread use of biomass in conjunction with whole cell biocatalysis or fermentation. Currently, these inhibitory compounds must be removed through additional downstream processing to create feedstock suitable for most industrially important microbial strains. This study explores the high ferulic acid tolerance in Lactobacillus brevis (L. brevis), a lactic acid bacteria often found in fermentation processes, by global transcriptional response analysis. The transcriptional profile of L. brevis under ferulic acid stress reveals that the presence of ferulic acid primarily triggers the expression of membrane proteins to counteract ferulic acid induced changes in membrane fluidity and ion leakage, in the midst of a generalized stress response. Several promising routes for understanding phenolic acid tolerance have been identified based upon these findings. These insights may be used to guide further engineering of model industrial organisms to better tolerate phenolic compounds in processed biomass. Three biological replicates were utilized for each time point. Total RNA was extracted using the Zymo Research Bacterial/Fungal RNA extraction kit Microarrays were indirectly labeled, hybridized, and washed according to the Fairplay III Kit protocol. Slides were scanned using the Axon GenePix 4200A scanner. Data normalization (LOWESS) was carried out on each array separately. The arithmetic average of probe signals was used to compute Log2 values.
Project description:The presence of anti-microbial phenolic compounds, such as the model compound ferulic acid, in biomass hydrolysates poses significant challenges to the widespread use of biomass in conjunction with whole cell biocatalysis or fermentation. Biofuel toxicity must also be overcome to allow for efficient production of next generation biofuels such as butanol, isopropanol, and others for widespread usage. Currently, these inhibitory compounds must be removed through additional downstream processing or sufficiently diluted to create environments suitable for most industrially important microbial strains. This study explores the high ferulic acid and n-butanol tolerance in Lactobacillus brevis (L. brevis), a lactic acid bacteria often found in fermentation processes, by global transcriptional response analysis. The transcriptional profile of L. brevis under ferulic acid and butanol stress reveals that the presence of ferulic acid primarily triggers the expression of membrane proteins to counteract ferulic acid induced changes in membrane fluidity and ion leakage. In contrast to the ferulic acid stress response, butanol addition to growing cultures uniquely induced the entire fatty acid synthesis pathway in the midst of a generalized stress response. Overexpression of the rate-limiting acetyl-CoA carboxylase subunits (AccABCD) in E. coli to increase lipid synthesis had no effect on butanol tolerance, suggesting that additional engineering is necessary to produce sufficient levels of appropriate fatty acids to confer butanol tolerance. Several promising routes for understanding both phenolic acid and butanol tolerance have been identified based upon these findings. These insights may be used to guide further engineering of model industrial organisms to better tolerate both classes of inhibitors in processed biomass used for biofuel production.
2011-12-31 | GSE24944 | GEO
Project description:Lactic acid bacteria used for fermentation
Project description:Bacterial exopolysaccharide (EPS) formation is crucial for biofilm formation, protection against environmental factors or as storage compounds. EPSs produced by lactic acid bacteria (LAB) are appropriate for applications in food fermentation or the pharmaceutical industry, yet the dynam-ics of formation and degradation thereof are rather poorly described. This study focuses on car-bohydrate active enzymes, including glycosyl transferases (GT) and glycoside hydrolases (GH), and their roles in the formation and potential degradation of O2-substituted (1,3)-β-D-glucan of Levilactobacillus (L.) brevis TMW 1.2112. The fermentation broth of L. brevis TMW 1.2112 was ana-lyzed for changes in viscosity, β-glucan and D-glucose concentrations during exponential, sta-tionary and early death phase. While the viscosity reached its maximum during stationary phase and subsequently decreased, the β-glucan concentration only increased to a plateau. Results were correlated with secretome and proteome data to identify involved enzymes and pathways. The suggested pathway for β-glucan biosynthesis involved a β-1,3 glucan synthase (GT2) and en-zymes from maltose phosphorylase (MP) operons. The decreased viscosity appeared to be associ-ated with cell lysis as the β-glucan concentration did not decrease most likely due to missing ex-tracellular carbohydrate active enzymes. In addition, an operon was discovered containing known moonlighting genes, all of which were detected in both proteome and secretome samples.
Project description:The presence of anti-microbial phenolic compounds, such as the model compound ferulic acid, in biomass hydrolysates poses significant challenges to the widespread use of biomass in conjunction with whole cell biocatalysis or fermentation. Biofuel toxicity must also be overcome to allow for efficient production of next generation biofuels such as butanol, isopropanol, and others for widespread usage. Currently, these inhibitory compounds must be removed through additional downstream processing or sufficiently diluted to create environments suitable for most industrially important microbial strains. This study explores the high ferulic acid and n-butanol tolerance in Lactobacillus brevis (L. brevis), a lactic acid bacteria often found in fermentation processes, by global transcriptional response analysis. The transcriptional profile of L. brevis under ferulic acid and butanol stress reveals that the presence of ferulic acid primarily triggers the expression of membrane proteins to counteract ferulic acid induced changes in membrane fluidity and ion leakage. In contrast to the ferulic acid stress response, butanol addition to growing cultures uniquely induced the entire fatty acid synthesis pathway in the midst of a generalized stress response. Overexpression of the rate-limiting acetyl-CoA carboxylase subunits (AccABCD) in E. coli to increase lipid synthesis had no effect on butanol tolerance, suggesting that additional engineering is necessary to produce sufficient levels of appropriate fatty acids to confer butanol tolerance. Several promising routes for understanding both phenolic acid and butanol tolerance have been identified based upon these findings. These insights may be used to guide further engineering of model industrial organisms to better tolerate both classes of inhibitors in processed biomass used for biofuel production. Cultures were grown to OD ~ 0.2 in MRS media (baffled flasks), T = 30 C, 100 rpm. Butanol was then added to the cultures. Samples were harvested 15, 75, and 135 min after butanol addition. Each time point has 3 biological replicates, and dye swaps were incorporated into the microarray experiments.
Project description:Lactococcus lactis is the main bacterium used for food fermentation and is a candidate for probiotic development. In addition to fermentation growth, supplementation with heme in aerobic conditions activates a cytochrome oxidase, which promotes respiration metabolism. In contrast to fermentation in which cells consume energy to produce mainly lactic acid, respiration metabolism dramatically changes energy metabolism, such that massive amounts of acetic acid and acetoin are produced at the expense of lactic acid. Our goal was to investigate the metabolic changes that correlate with significantly improved growth and survival during respiration growth. Using transcriptional time course analyses, mutational analyses, and promoter reporter fusions, we uncover two main pathways that can explain the robust growth and stability of respiration cultures: The acetate pathway contributes to biomass yield in respiration, without affecting medium pH. The acetoin pathway allows cells to cope with internal acidification, which directly affects cell density and survival in stationary phase. Our results suggest that manipulation of these pathways could lead to fine tuning respiration growth, with improved yield and stability.