Project description:The aggressive clinical behavior of mantle cell lymphoma (MCL) is attributed to specific genetic and molecular mechanisms involved in its pathogenesis, mainly the t(11;14)(q13;q32) traslocation and cyclin D1 (CCND1) overexpression. Nevertheless, evidence of a certain degree of heterogeneity has been disclosed by gene expression profile (GEP) and (immuno)genetic/immunohistochemistry studies. AIM: To use a GEP approach in MCL cell line models.
Project description:The Gene Expression Study (GEP) was based on a cohort of 27 MCL cases enrolled in the Fondazione Italiana Linfomi (FIL)-MCL-0208 randomized Italian clinical trial.
Project description:The aggressive clinical behavior of mantle cell lymphoma (MCL) is attributed to specific genetic and molecular mechanisms involved in its pathogenesis, mainly the t(11;14)(q13;q32) traslocation and cyclin D1 (CCND1) overexpression. Nevertheless, evidence of a certain degree of clinical/biological heterogeneity has been disclosed by gene expression profile (GEP) and (immuno)genetic/immunohistochemistry studies. AIM: To use a GEP approach to identify MCL subsets with peculiar clinical/biological features in the context of of MCL patients treated homogeneously with an autologous transplantation-based program.
Project description:The neural transcription factor SOX11 is overexpressed in aggressive lymphoid neoplasms mainly in mantle cell lymphoma (MCL), but its functional role in malignant B-cells is unknown. To identify target genes transcriptionally regulated by SOX11 in malignant lymphoid cells, we have used Gene Expression Profiling (GEP) after SOX11 silencing in MCL cell lines. Differential gene expression between Z138-shSOX11 and Z138-shControl MCL cell lines. To determine the transcriptional programs regulated by SOX11, we first generated an MCL cellular model with reduced SOX11 protein levels by infecting MCL cell lines with lentiviral particles carrying shRNA plasmids specifically targeting SOX11 (shSOX11.1 and shSOX11.3). Next, we compared the GEP of shSOX11 and shControl Z138 stable transduced clones using the Affymetrix U133+2.0 microarrays.
Project description:Gene expression profiling of immortalized human mesenchymal stem cells with hTERT/E6/E7 transfected MSCs. hTERT may change gene expression in MSCs. Goal was to determine the gene expressions of immortalized MSCs.
Project description:Kynureninase is a member of a large family of catalytically diverse but structurally homologous pyridoxal 5'-phosphate (PLP) dependent enzymes known as the aspartate aminotransferase superfamily or alpha-family. The Homo sapiens and other eukaryotic constitutive kynureninases preferentially catalyze the hydrolytic cleavage of 3-hydroxy-l-kynurenine to produce 3-hydroxyanthranilate and l-alanine, while l-kynurenine is the substrate of many prokaryotic inducible kynureninases. The human enzyme was cloned with an N-terminal hexahistidine tag, expressed, and purified from a bacterial expression system using Ni metal ion affinity chromatography. Kinetic characterization of the recombinant enzyme reveals classic Michaelis-Menten behavior, with a Km of 28.3 +/- 1.9 microM and a specific activity of 1.75 micromol min-1 mg-1 for 3-hydroxy-dl-kynurenine. Crystals of recombinant kynureninase that diffracted to 2.0 A were obtained, and the atomic structure of the PLP-bound holoenzyme was determined by molecular replacement using the Pseudomonas fluorescens kynureninase structure (PDB entry 1qz9) as the phasing model. A structural superposition with the P. fluorescens kynureninase revealed that these two structures resemble the "open" and "closed" conformations of aspartate aminotransferase. The comparison illustrates the dynamic nature of these proteins' small domains and reveals a role for Arg-434 similar to its role in other AAT alpha-family members. Docking of 3-hydroxy-l-kynurenine into the human kynureninase active site suggests that Asn-333 and His-102 are involved in substrate binding and molecular discrimination between inducible and constitutive kynureninase substrates.
Project description:By combining extensive biochemical fractionation with quantitative mass spectrometry, we directly examined the composition of soluble multiprotein complexes among diverse animal models. The project has been jointly supervised by Andrew Emili and Edward M. Marcotte. Project website: http://metazoa.med.utoronto.ca