Project description:The aim of the study was to investigate differences in the gene expression profiles of selected tissues in two most popular goat’s breeds in Poland: Polish White Improved (PWI) and Polish Fawn Improved (PFI). Three different types of tissue samples were selected: somatic cells isolated from goats’ milk (MSC), milk fat globules (MFG) and peripheral nuclear blood cells (PBNC) Since there were no earlier genetic studies focused on genetic differences between these two goat breeds we decided to evaluate hypothetical genomic differences assuming that such a differences should be the consequence of genetic differences. We created the hypothesis that if genomic differences exist they should be revealed in hierarchical clustering of transcriptomic profiles of selected tissues. Should the genomic differences exist the clusters obtained are grouping goat breeds and not goat’s tissues. The results of hierarchical clustering however show something completely different. The clusters are grouping goat tissues (milk fat globules, milk somatic cells, peripheral blood nuclear cells) without any relation with goat breed. So the analytical tool does not recognize the goat breed as a driver of transcriptomic difference. Moreover, we were not able to find significantly regulated genes between two breeds
Project description:The present study, for the first time, compared the transcriptomes of ovaries from the prolific Jintang black goat and the non-prolific Tibetan goat during follicular phase using the Illumina RNA-Seq method. The study provides insight into the transcriptional regulation in the ovaries of two distinct breeds of goats that might serve as a key resource for understanding goat fecundity.
Project description:The domestic goat, Capra hircus (2n=60), is one of the most important domestic livestock species in the world. Here we report its high quality reference genome generated by combining Illumina short reads sequencing and a new automated and high throughput whole genome mapping system based on the optical mapping technology which was used to generate extremely long super-scaffolds. The N50 size of contigs, scaffolds, and super-scaffolds for the sequence assembly reported herein are 18.7 kb, 3.06 Mb, and 18.2 Mb, respectively. Almost 95% of the supper-scaffolds are anchored on chromosomes based on conserved syntenic information with cattle. The assembly is strongly supported by the RH map of goat chromosome 1. We annotated 22,175 protein-coding genes, most of which are recovered by RNA-seq data of ten tissues. Rapidly evolving genes and gene families are enriched in metabolism and immune systems, consistent with the fact that the goat is one of the most adaptable and geographically widespread livestock species. Comparative transcriptomic analysis of the primary and secondary follicles of a cashmere goat revealed 51 genes that were significantly differentially expressed between the two types of hair follicles. This study not only provides a high quality reference genome for an important livestock species, but also shows that the new automated optical mapping technology can be used in a de novo assembly of large genomes. We have sequenced a 3-year-old female Yunnan black goat and constructed a reference sequence for this breed. In order to improve quality of gene models, RNA samples of ten tissues(Bladder, Brain, Heart, Kidney, Liver, Lung, Lymph, Muscle, Ovarian, Spleen) were extracted from the same goat which was sequenced. To investigate the genic basis underlying the development of cashmere fibers using the goat reference genome assembly and annotated genes, we extracted RNA samples of primary hair follicle and secondary hair follicle from three Inner Mongolia cashmere goats and conducted transcriptome sequencing and DEG analysis. Corresponding whole genome sequencing is available in NCBI BioProject PRJNA158393.
Project description:The domestic goat, Capra hircus (2n=60), is one of the most important domestic livestock species in the world. Here we report its high quality reference genome generated by combining Illumina short reads sequencing and a new automated and high throughput whole genome mapping system based on the optical mapping technology which was used to generate extremely long super-scaffolds. The N50 size of contigs, scaffolds, and super-scaffolds for the sequence assembly reported herein are 18.7 kb, 3.06 Mb, and 18.2 Mb, respectively. Almost 95% of the supper-scaffolds are anchored on chromosomes based on conserved syntenic information with cattle. The assembly is strongly supported by the RH map of goat chromosome 1. We annotated 22,175 protein-coding genes, most of which are recovered by RNA-seq data of ten tissues. Rapidly evolving genes and gene families are enriched in metabolism and immune systems, consistent with the fact that the goat is one of the most adaptable and geographically widespread livestock species. Comparative transcriptomic analysis of the primary and secondary follicles of a cashmere goat revealed 51 genes that were significantly differentially expressed between the two types of hair follicles. This study not only provides a high quality reference genome for an important livestock species, but also shows that the new automated optical mapping technology can be used in a de novo assembly of large genomes. Corresponding whole genome sequencing is available in NCBI BioProject PRJNA158393. We have sequenced a 3-year-old female Yunnan black goat and constructed a reference sequence for this breed. In order to improve quality of gene models, RNA samples of ten tissues (Bladder, Brain, Heart, Kidney, Liver, Lung, Lymph, Muscle, Ovarian, Spleen) were extracted from the same goat which was sequenced. To investigate the genic basis underlying the development of cashmere fibers using the goat reference genome assembly and annotated genes, we extracted RNA samples of primary hair follicle and secondary hair follicle from three Inner Mongolia cashmere goats and conducted transcriptome sequencing and DGE analysis. This submission represents RNA-Seq component of study.
Project description:Background The goat (Capra hircus) represents one of the most important farm animal species. It is reared in all continents with an estimated world population of about 800 million of animals. Despite its importance, studies on the goat genome are still in their infancy compared to those in other farm animal species. Comparative mapping between cattle and goat showed only a few rearrangements in agreement with the similarity of chromosome banding. We carried out a cross species cattle-goat array comparative genome hybridization (aCGH) experiment in order to identify copy number variations (CNVs) in the goat genome analysing animals of different breeds (Saanen, Camosciata delle Alpi, Girgentana, and Murciano-Granadina) using a tiling oligonucleotide array with ~385,000 probes designed on the bovine genome. Results We identified a total of 161 CNVs (an average of 17.9 CNVs per goat), with the largest number in the Saanen breed and the lowest in the Camosciata delle Alpi goat. By aggregating overlapping CNVs identified in different animals we determined CNV regions (CNVRs): on the whole, we identified 127 CNVRs covering about 11.47 Mb of the virtual goat genome referred to the bovine genome (0.435% of the latter genome). These 127 CNVRs included 86 loss and 41 gain and ranged from about 24 kb to about 1.07 Mb with a mean and median equal to 90,292 bp and 49,530 bp, respectively. To evaluate whether the identified goat CNVRs overlap with those reported in the cattle genome, we compared our results with those obtained in four independent cattle experiments. Overlapping between goat and cattle CNVRs was highly significant (P<0.0001) suggesting that several chromosome regions might contain recurrent interspecies CNVRs. Genes with environmental functions were over-represented in goat CNVRs as reported in other mammals. Conclusions We describe a first map of goat CNVRs. This provides information on a comparative basis with the cattle genome by identifying putative recurrent interspecies CNVs between these two ruminant species. Several goat CNVs affect genes with important biological functions. Further studies are needed to evaluate the functional relevance of these CNVs and their effects on behavior, production, and disease resistance traits in goats.
Project description:Background The goat (Capra hircus) represents one of the most important farm animal species. It is reared in all continents with an estimated world population of about 800 million of animals. Despite its importance, studies on the goat genome are still in their infancy compared to those in other farm animal species. Comparative mapping between cattle and goat showed only a few rearrangements in agreement with the similarity of chromosome banding. We carried out a cross species cattle-goat array comparative genome hybridization (aCGH) experiment in order to identify copy number variations (CNVs) in the goat genome analysing animals of different breeds (Saanen, Camosciata delle Alpi, Girgentana, and Murciano-Granadina) using a tiling oligonucleotide array with ~385,000 probes designed on the bovine genome. Results We identified a total of 161 CNVs (an average of 17.9 CNVs per goat), with the largest number in the Saanen breed and the lowest in the Camosciata delle Alpi goat. By aggregating overlapping CNVs identified in different animals we determined CNV regions (CNVRs): on the whole, we identified 127 CNVRs covering about 11.47 Mb of the virtual goat genome referred to the bovine genome (0.435% of the latter genome). These 127 CNVRs included 86 loss and 41 gain and ranged from about 24 kb to about 1.07 Mb with a mean and median equal to 90,292 bp and 49,530 bp, respectively. To evaluate whether the identified goat CNVRs overlap with those reported in the cattle genome, we compared our results with those obtained in four independent cattle experiments. Overlapping between goat and cattle CNVRs was highly significant (P<0.0001) suggesting that several chromosome regions might contain recurrent interspecies CNVRs. Genes with environmental functions were over-represented in goat CNVRs as reported in other mammals. Conclusions We describe a first map of goat CNVRs. This provides information on a comparative basis with the cattle genome by identifying putative recurrent interspecies CNVs between these two ruminant species. Several goat CNVs affect genes with important biological functions. Further studies are needed to evaluate the functional relevance of these CNVs and their effects on behavior, production, and disease resistance traits in goats. We analysed CNVs in the goat genome by means of a cross-species aCGH experiment using the Roche NimbleGen platform (Roche NimbleGen Inc., Madison, WI; http://www.nimblegen.com) based on custom tiling arrays designed on the bovine (Bos taurus) genome, Btau_4.0 version, including a fraction of BTA13 of the University of Maryland (UMD) Bos taurus v. 2.0 assembly (ftp://ftp.cbcb.umd.edu/pub/data/Bos_taurus/Bos_taurus_UMD_2.0/). Arrays contained ~385,000 probes on a single slide to provide an evenly distributed coverage with an average interval of ~6 kb for the Btau_4.0 genome. The BTA13 of the UMD v. 2.0 assembly was included from nucleotide position 48 M bp to nucleotide position 78 M bp (4,673 oligonucleotides and average spacing of ~6 kb). This chromosome region was analysed as internal control because it contains the ASIP gene, not assembled in the BTA13 of the Btau_4.0 version Goat genomic DNA was extracted from blood of 2 Camosciata delle Alpi, 3 Girgentana, 3 Saanen, 1 black and 1 brown Murciano-Granadina goats using the Wizard® Genomic DNA Purification kit (Promega Corporation, Madison, WI). All analysed animals were females. Reference DNA sample of one (C1) Camosciata delle Alpi goat was labeled with Cy5 and co-hybridised with the other test DNA samples labelled with Cy3 on 9 different arrays. A self hybridisation (reference labelled by both Cy5 and Cy3) was carried out in another array. Hybridization and array scanning were performed by Roche NimbleGen as previously described. Data normalization was conducted using the normalize.qsline method from the Bioconductor package in R. Then data were analysed for each hybridization using normalized log2 ratios using the CGHweb server (http://compbio.med.harvard.edu/CGHweb/) that includes multiple algorithms.
Project description:Molecular mechanisms of follicular atresia and prolificacy of mammal remain unclear. We surveyed the single-cell transcriptomic landscape of ovaries from single and prolificacy goat and identified seven ovarian cell types with distinct gene-expression, transcriptional factor networks and reciprocal interactions signatures. In-depth dissection of gene-expression dynamics of granulosa cells (GCs) that displayed development stage-specific expression patterns and specific gene signatures were identified that may reflect developmental competency and ovarian reserve. what’s more, we revealed the origin of theca cells. Further analysis of cell-type-specific prolificacy-associated transcriptional changes uncovered apoptosis, anabolism and response to hormone stimulation as are crucial factor in dominant follicle development and ovulation. Additionally, differentially expressed genes (DEGs) of SERPINE2 can interact with CYP19A1 to promote cell proliferation, inhibit apoptosis and promoting the anabolism were observed in mouse granulosa cells. Thus, our work provides a comprehensive understanding of the cell-type-specific mechanisms underlying goat ovarian prolificacy at single-cell resolution, provides key insights into offers important clues for improving follicle recruitment in vivo and revealing new diagnostic biomarkers and potential therapeutic targets for ovulation disorder.