Project description:This study is to investigate the use of microbial remediation technology for degradation of dexamethasone in polluted water. A strain of Pseudomonas Alcaligenes with the ability of dexamethasone degradation was isolated from hospital polluted water. This strain was further acclimated into a bacterial strain that could highly degrade dexamethasone. Domesticated bacterial proteins were separated by osmotic shock method and were analyzed using SDS-PAGE. Enzyme activity of dexamethasone degradation was detected by high performance liquid chromatography. Protein bands with different molecular weight were found in all regions of the bacteria and a band with molecular weight of about 100 kDa was most obvious. In intracellular and periplasmic liquid, there was a band with molecular weight of about 41 kDa. Enzyme activity mainly existed in intracellular liquid. The 41 kDa protease was purified using ammonium sulfate precipitation, DEAE-52 ion exchange column and Sephadex G-100 column. Dexamethasone and dexamethasone sodium phosphate degrading rates of the purified enzyme were 36% and 95%, respectively. The 100 kDa protein had a 19% coverage rate to TonB receptor dependent protein, with 11 peptides matching. The 41 kDa protein had a 56% coverage rate to isovaleryl coenzyme A dehydrogenase, with 5 peptides matching. The 41 kDa protein had good degradation between the temperature of 25-40°C and PH value of 6.5-8.5. The enzyme kinetics equation was Ct = C0 e(-0.1769t), in accordance with the first-order kinetic equation. This study laid the foundation for further preparation of bioremediation agents for clearance of dexamethasone pollution in water.
Project description:A novel Alcaligenes sp. strain P156, which can utilize nicotinamide as its sole source of carbon, nitrogen and energy, was enriched and isolated from soil in a solid waste treatment plant. Aerobic growth and degradation with nicotinamide were characterized. Seven nicotinamide degradation-related genes were obtained by sequence alignment from the genome sequence of strain P156. Four genes, designated naaA, naaD, naaE and naaF, were cloned and heterologously expressed. Nicotinamide degradation is initiated by deamination to form nicotinic acid catalyzed by the nicotinamidase NaaA, which shares highest amino acid sequence identity (27.2%) with nicotinamidase from Arabidopsis thaliana. Nicotinic acid is converted to 6-hydroxynicotinic acid, which is further oxidized to 2,5-dihydroxypyridine (2,5-DHP). 2,5-DHP is then transformed to a ring-cleavage product, N-formylmaleamic acid, by an Fe2+ dependent dioxygenase NaaD. N-formylmaleamic acid is transformed to fumaric acid through maleamic acid and maleic acid by NaaE and NaaF, respectively. To our knowledge, this is the first report of the complete microbial degradation of nicotinamide in bacteria. Nicotinamide is considered as a model compound for the study of microbial degradation of pyridinic compounds, and the nicotinamide degrading related genes in strain P156 were distributed differently from the reported similar gene clusters. Therefore, this study contribute to the knowledge on the degradation of pyridinic compounds.
Project description:We report a draft genome sequence of Alcaligenes sp. strain HPC1271, which demonstrates antimicrobial activity against multidrug-resistant bacteria. Antibiotic production by Alcaligenes has not been frequently reported, and hence, the availability of the genome sequence should enable us to explore new antibiotic-producing gene clusters.
Project description:Environmental contamination with hydrocarbons though natural and anthropogenic activities is a serious threat to biodiversity and human health. Microbial bioremediation is considered as the effective means of treating such contamination. This study describes a biosurfactant producing bacterium capable of utilizing crude oil and various hydrocarbons as the sole carbon source. Strain BU33N was isolated from hydrocarbon polluted sediments from the Bizerte coast (northern Tunisia) and was identified as Alcaligenes aquatilis on the basis of 16S rRNA gene sequence analysis. When grown on crude oil and phenanthrene as sole carbon and energy sources, isolate BU33N was able to degrade ~86%, ~56% and 70% of TERHc, n-alkanes and phenanthrene, respectively. The draft genome sequence of the A. aquatilis strain BU33N was assembled into one scaffold of 3,838,299 bp (G+C content of 56.1%). Annotation of the BU33N genome resulted in 3,506 protein-coding genes and 56 rRNA genes. A large repertoire of genes related to the metabolism of aromatic compounds including genes encoding enzymes involved in the complete degradation of benzoate were identified. Also genes associated with resistance to heavy metals such as copper tolerance and cobalt-zinc-cadmium resistance were identified in BU33N. This work provides insight into the genomic basis of biodegradation capabilities and bioremediation/detoxification potential of A. aquatilis BU33N.
Project description:We report here the draft genome sequence of Alcaligenes faecalis strain MOR02, a bacterium that is able to colonize nematodes in a temporary fashion and kill insects for their own benefit. The availability of the genome should enable us to explain these phenotypes.
Project description:The classical bordetellae (Bordetella pertussis, B. parapertussis, and B. bronchiseptica) are obligate aerobes that use only oxygen as their terminal electron acceptor for electron transport-coupled oxidative phosphorylation. Therefore, access to oxygen is critical for these bacteria to survive. To better understand how B. bronchiseptica changes its gene regulation when faced with different levels of oxygen, we grew liquid cultures of B. bronchiseptica RB50 in ambient air, 5% oxygen, and 2% oxygen. We also measured how the presence of 5% carbon dioxide affected gene expression in these bacteria, since they are respiratory pathogens and therefore get exposed to higher carbon dioxide levels during infection than are found in ambient air.
Project description:The full-length gene encoding the histone deacetylase (HDAC)-like amidohydrolase (HDAH) from Bordetella or Alcaligenes (Bordetella/Alcaligenes) strain FB188 (DSM 11172) was cloned using degenerate primer PCR combined with inverse-PCR techniques and ultimately expressed in Escherichia coli. The expressed enzyme was biochemically characterized and found to be similar to the native enzyme for all properties examined. Nucleotide sequence analysis revealed an open reading frame of 1,110 bp which encodes a polypeptide with a theoretical molecular mass of 39 kDa. Interestingly, peptide sequencing disclosed that the N-terminal methionine is lacking in the mature wild-type enzyme, presumably due to the action of methionyl aminopeptidase. Sequence database searches suggest that the new amidohydrolase belongs to the HDAC superfamily, with the closest homologs being found in the subfamily assigned acetylpolyamine amidohydrolases (APAH). The APAH subfamily comprises enzymes or putative enzymes from such diverse microorganisms as Pseudomonas aeruginosa, Archaeoglobus fulgidus, and the actinomycete Mycoplana ramosa (formerly M. bullata). The FB188 HDAH, however, is only moderately active in catalyzing the deacetylation of acetylpolyamines. In fact, FB188 HDAH exhibits significant activity in standard HDAC assays and is inhibited by known HDAC inhibitors such as trichostatin A and suberoylanilide hydroxamic acid (SAHA). Several lines of evidence indicate that the FB188 HDAH is very similar to class 1 and 2 HDACs and contains a Zn(2+) ion in the active site which contributes significantly to catalytic activity. Initial biotechnological applications demonstrated the extensive substrate spectrum and broad optimum pH range to be excellent criteria for using the new HDAH from Bordetella/Alcaligenes strain FB188 as a biocatalyst in technical biotransformations, e.g., within the scope of human immunodeficiency virus reverse transcriptase inhibitor synthesis.
Project description:Alcaligenes sp. strain NyZ215 was isolated for its ability to grow on ortho-nitrophenol (ONP) as the sole source of carbon, nitrogen, and energy and was shown to degrade ONP via a catechol ortho-cleavage pathway. A 10,152-bp DNA fragment extending from a conserved region of the catechol 1,2-dioxygenase gene was obtained by genome walking. Of seven complete open reading frames deduced from this fragment, three (onpABC) have been shown to encode the enzymes involved in the initial reactions of ONP catabolism in this strain. OnpA, which shares 26% identity with salicylate 1-monooxygenase of Pseudomonas stutzeri AN10, is an ONP 2-monooxygenase (EC 1.14.13.31) which converts ONP to catechol in the presence of NADPH, with concomitant nitrite release. OnpC is a catechol 1,2-dioxygenase catalyzing the oxidation of catechol to cis,cis-muconic acid. OnpB exhibits 54% identity with the reductase subunit of vanillate O-demethylase in Pseudomonas fluorescens BF13. OnpAB (but not OnpA alone) conferred on the catechol utilizer Pseudomonas putida PaW340 the ability to grow on ONP. This suggests that OnpB may also be involved in ONP degradation in vivo as an o-benzoquinone reductase converting o-benzoquinone to catechol. This is analogous to the reduction of tetrachlorobenzoquinone to tetrachlorohydroquinone by a tetrachlorobenzoquinone reductase (PcpD, 38% identity with OnpB) in the pentachlorophenol degrader Sphingobium chlorophenolicum ATCC 39723.
Project description:BackgroundDrug-resistant bacteria are important carriers of antibiotic-resistant genes (ARGs). This fact is crucial for the development of precise clinical drug treatment strategies. Long-read sequencing platforms such as the Oxford Nanopore sequencer can improve genome assembly efficiency particularly when they are combined with short-read sequencing data.ResultsAlcaligenes faecalis PGB1 was isolated and identified with resistance to penicillin and three other antibiotics. After being sequenced by Nanopore MinION and Illumina sequencer, its entire genome was hybrid-assembled. One chromosome and one plasmid was assembled and annotated with 4,433 genes (including 91 RNA genes). Function annotation and comparison between strains were performed. A phylogenetic analysis revealed that it was closest to A. faecalis ZD02. Resistome related sequences was explored, including ARGs, Insert sequence, phage. Two plasmid aminoglycoside genes were determined to be acquired ARGs. The main ARG category was antibiotic efflux resistance and β-lactamase (EC 3.5.2.6) of PGB1 was assigned to Class A, Subclass A1b, and Cluster LSBL3.ConclusionsThe present study identified the newly isolated bacterium A. faecalis PGB1 and systematically annotated its genome sequence and ARGs.
Project description:Here we present and analyze the complete genome of Alcaligenes faecalis strain Mc250 (Mc250), a bacterium isolated from the roots of Mimosa calodendron, an endemic plant growing in ferruginous rupestrian grasslands in Minas Gerais State, Brazil. The genome has 4,159,911 bp and 3,719 predicted protein-coding genes, in a single chromosome. Comparison of the Mc250 genome with 36 other Alcaligenes faecalis genomes revealed that there is considerable gene content variation among these strains, with the core genome representing only 39% of the protein-coding gene repertoire of Mc250. Mc250 encodes a complete denitrification pathway, a network of pathways associated with phenolic compounds degradation, and genes associated with HCN and siderophores synthesis; we also found a repertoire of genes associated with metal internalization and metabolism, sulfate/sulfonate and cysteine metabolism, oxidative stress and DNA repair. These findings reveal the genomic basis for the adaptation of this bacterium to the harsh environmental conditions from where it was isolated. Gene clusters associated with ectoine, terpene, resorcinol, and emulsan biosynthesis that can confer some competitive advantage were also found. Experimental results showed that Mc250 was able to reduce (~60%) the virulence phenotype of the plant pathogen Xanthomonas citri subsp. citri when co-inoculated in Citrus sinensis, and was able to eradicate 98% of juveniles and stabilize the hatching rate of eggs to 4% in two species of agricultural nematodes. These results reveal biotechnological potential for the Mc250 strain and warrant its further investigation as a biocontrol and plant growth-promoting bacterium.