Project description:Ongoing elimination efforts have altered the global distribution of Onchocerca volvulus, the agent of river blindness, and further population restructuring is expected as efforts continue. Therefore, a better understanding of population genetic processes and their effect on biogeography is needed to support elimination goals. We describe O. volvulus genome variation in 27 isolates from the early 1990s (before widespread mass treatment) from four distinct locales: Ecuador, Uganda, the West African forest and the West African savanna. We observed genetic substructuring between Ecuador and West Africa and between the West African forest and savanna bioclimes, with evidence of unidirectional gene flow from savanna to forest strains. We identified forest:savanna-discriminatory genomic regions and report a set of ancestry informative loci that can be used to differentiate between forest, savanna and admixed isolates, which has not previously been possible. We observed mito-nuclear discordance possibly stemming from incomplete lineage sorting. The catalogue of the nuclear, mitochondrial and endosymbiont DNA variants generated in this study will support future basic and translational onchocerciasis research, with particular relevance for ongoing control programmes, and boost efforts to characterize drug, vaccine and diagnostic targets.
Project description:We sequenced total RNA from Dirofilaria immitis in order to generate the first tissue-specific gene expression profile of a filarial nematode and its Wolbachia endosymbiont.
Project description:We sequenced total RNA from Dirofilaria immitis in order to generate the first tissue-specific gene expression profile of a filarial nematode and its Wolbachia endosymbiont. Examination of transcript levels in 7 different Dirofilaria immitis tissues, in duplicate, using Illumina GAIIx.
Project description:Genomic assembly of Wolbachia endosymbiont of nematode Onchocerca volvulus, as part of the 50 Helminth Genomes Initiative sequencing of the parasitic worms that have the greatest impact on human, agricultural and veterinary disease and cause significant global health issues particularly in the developing world, or those used as model organisms.
Project description:Brugia malayi is a parasitic nematode that causes lymphatic filariasis in humans. A total of 178 novel microRNA were identified from short read transcriptional data, which when combined with known Brugia microRNAs yielded a total of 284 microRNA. Of these, 123 microRNA sequences (43%) are differentially expressed over the mammalian life stages of B. malayi that we examined. Putative targets of these microRNA were identified from inversely expressed target clusters that contain valid seed sequences for the corresponding microRNAs. The largest identified cluster is downregulated in adult females and enriched in zinc finger domains, helicase domains, and DNA binding domains suggesting this microRNA cluster may have regulatory control over a large proportion of adult female specific mRNA genes. MicroRNA-like molecules are identified as produced by the Wolbachia endosymbiont, providing evidence for direct nucleic acid-based interdomain communication between filarial nematodes and their bacterial obligate endosymbiont.
Project description:This data is part of a pre-publication release. For information on the proper use of pre-publication data shared by the Wellcome Trust Sanger Institute (including details of any publication moratoria), please see http://www.sanger.ac.uk/datasharing/ Onchocerca volvulus is a filarial nematode parasite of humans, causing Onchocerciasis, or River Blindness, which affects over 37 million people, mainly in Africa. It is a severely debilitating disease, which is transmitted to humans by black fly. This project aims to undertake high-throughput sequencing of Onchocerca volvulus transcriptome for de novo assembly of transcripts. The main objective of this project is to recognize genes expressed in given life stages.