Project description:Wolbachia species are endosymbionts of a wide range of invertebrates, including mosquitoes, fruit flies, and nematodes. The wPip strains can cause cytoplasmic incompatibility in some strains of the Culex mosquito. Here we describe the genome sequence of a Wolbachia strain that was discovered in the whole-genome sequencing data for the mosquito Culex quinquefasciatus strain JHB.
Project description:We report the application of Cappable-seq to selectively enrich prokaryotic endosymbiont transcripts from mixed host-symbiont total RNA.
Project description:We sequenced total RNA from Dirofilaria immitis in order to generate the first tissue-specific gene expression profile of a filarial nematode and its Wolbachia endosymbiont.
Project description:Brugia malayi is a parasitic nematode that causes lymphatic filariasis in humans. A total of 178 novel microRNA were identified from short read transcriptional data, which when combined with known Brugia microRNAs yielded a total of 284 microRNA. Of these, 123 microRNA sequences (43%) are differentially expressed over the mammalian life stages of B. malayi that we examined. Putative targets of these microRNA were identified from inversely expressed target clusters that contain valid seed sequences for the corresponding microRNAs. The largest identified cluster is downregulated in adult females and enriched in zinc finger domains, helicase domains, and DNA binding domains suggesting this microRNA cluster may have regulatory control over a large proportion of adult female specific mRNA genes. MicroRNA-like molecules are identified as produced by the Wolbachia endosymbiont, providing evidence for direct nucleic acid-based interdomain communication between filarial nematodes and their bacterial obligate endosymbiont.
Project description:A whole transcriptome approach to investigate the genes involved in permethrin resistance in the Southern house mosquito, Culex quinquefasciatus
Project description:We sequenced total RNA from Dirofilaria immitis in order to generate the first tissue-specific gene expression profile of a filarial nematode and its Wolbachia endosymbiont. Examination of transcript levels in 7 different Dirofilaria immitis tissues, in duplicate, using Illumina GAIIx.