Project description:Validation of Gene Array to Predict Bacterial Co-infection In Adults Hospitalized with Viral Lower Respiratory Tract Infections (LRTI)
Project description:Analysis of transcriptional profiles in whole blood and nasopharyngeal swaps from children hospitalized with lower respiratory tract infections at their admission and their discharge, and diagnosed with either RSV or rhinovirus infections. The hypothesis is that this information will contribute to better understand the viral specific immunity and host responses to RSV infection and may suggest leads for the develoment of vaccines and specific treatment.
Project description:Analysis of transcriptional profiles in whole blood and nasopharyngeal swaps from children hospitalized with lower respiratory tract infections at their admission and their discharge, and diagnosed with either RSV or rhinovirus infections. The hypothesis is that this information will contribute to better understand the viral specific immunity and host responses to RSV infection and may suggest leads for the develoment of vaccines and specific treatment.
Project description:Background: Distinguishing between bacterial and viral lower respiratory tract infections (LRTI) in hospitalized patients remains challenging. Transcriptional profiling is a promising tool for improving diagnosis in LRTI. Methods: We performed whole blood transcriptional analysis in a cohort of 118 adult patients (median [IQR] age, 61 [50-76] years) hospitalized with bacterial, viral or viral-bacterial LRTI, and 40 age-matched healthy controls (60 [46-70] years). We applied class comparisons, modular analysis and class prediction algorithms to identify distinct biosignatures for bacterial and viral LRTI, which were validated in an independent group of patients. Results: Patients were classified as bacterial (B, n=22), viral (V, n=71) and bacterial-viral LRTI (BV, n=25) based on comprehensive microbiologic testing. Compared with healthy controls statistical group comparisons (p<0.01; with multiple test corrections) identified 3,376 differentially expressed genes in patients with B-LRTI; 2,391 in V-LRTI, and 2,628 in BV-LRTI. Independent of etiologic pathogen, patients with LRTI demonstrated overexpression of innate immunity and underexpression of adaptive immunity genes. Patients with B-LRTI showed significant overexpression of inflammation (B>BV>V) and neutrophils (B>BV>V) while those with V-LRTI displayed significantly greater overexpression of interferon genes (V>BV>B). The K-Nearest Neighbors (K-NN) algorithm identified 10 classifier genes that discriminated patients with bacterial vs viral LRTI with 97% [95%CI: 84-100] sensitivity and 92% [77-98] specificity. In comparison, procalcitonin classified bacterial vs viral LRTI with 38% [18-62] sensitivity and 91% [76-98] specificity. Conclusions: Transcriptional profiling can be used as a helpful tool for the diagnosis of adults hospitalized with LRTI. 158 samples, no replicates; bacterial LRTI n=22, viral LRTI n=71, bacterial-viral coinfections n=25, and healthy controls n=40
Project description:Transcriptional Profiling is Superior to Procalcitonin to Discriminate Bacterial vs. Viral Lower Respiratory Tract Infections in Hospitalized Adults
Project description:Background: Distinguishing between bacterial and viral lower respiratory tract infections (LRTI) in hospitalized patients remains challenging. Transcriptional profiling is a promising tool for improving diagnosis in LRTI. Methods: We performed whole blood transcriptional analysis in a cohort of 118 adult patients (median [IQR] age, 61 [50-76] years) hospitalized with bacterial, viral or viral-bacterial LRTI, and 40 age-matched healthy controls (60 [46-70] years). We applied class comparisons, modular analysis and class prediction algorithms to identify distinct biosignatures for bacterial and viral LRTI, which were validated in an independent group of patients. Results: Patients were classified as bacterial (B, n=22), viral (V, n=71) and bacterial-viral LRTI (BV, n=25) based on comprehensive microbiologic testing. Compared with healthy controls statistical group comparisons (p<0.01; with multiple test corrections) identified 3,376 differentially expressed genes in patients with B-LRTI; 2,391 in V-LRTI, and 2,628 in BV-LRTI. Independent of etiologic pathogen, patients with LRTI demonstrated overexpression of innate immunity and underexpression of adaptive immunity genes. Patients with B-LRTI showed significant overexpression of inflammation (B>BV>V) and neutrophils (B>BV>V) while those with V-LRTI displayed significantly greater overexpression of interferon genes (V>BV>B). The K-Nearest Neighbors (K-NN) algorithm identified 10 classifier genes that discriminated patients with bacterial vs viral LRTI with 97% [95%CI: 84-100] sensitivity and 92% [77-98] specificity. In comparison, procalcitonin classified bacterial vs viral LRTI with 38% [18-62] sensitivity and 91% [76-98] specificity. Conclusions: Transcriptional profiling can be used as a helpful tool for the diagnosis of adults hospitalized with LRTI.
Project description:This series includes 278 microarrays used to detect respiratory viruses in a set of nasopharyngeal lavage specimens from children with respiratory tract infections Objective: To assess the utility of a pan-viral DNA microarray platform (Virochip) in the detection of viruses associated with pediatric respiratory tract infections. Study Design: The Virochip was compared to conventional clinical direct fluorescent antibody (DFA) and PCR-based testing for the detection of respiratory viruses in 278 consecutive nasopharyngeal aspirate samples from 222 children. Results: The Virochip was superior in performance to DFA, showing a 19% increase in the detection of 7 respiratory viruses included in standard DFA panels, and was similar to virus-specific PCR (sensitivity 85-90%, specificity 99%, PPV 94-96%, NPV 97-98%) in the detection of respiratory syncytial virus, influenza A, and rhino-/enteroviruses. The Virochip also detected viruses not routinely tested for or missed by DFA and PCR, as well as double infections and infections in critically ill patients that DFA failed to detect. Conclusions: Given its favorable sensitivity and specificity profile and greatly expanded spectrum of detection, microarray-based viral testing holds promise for clinical diagnosis of pediatric respiratory tract infections. Keywords: viral detection The series includes 278 clinical specimens
Project description:<p><b>Public health importance</b>: Babies born preterm, approximately 1 out of every 9 live births in the United States, have significant respiratory morbidity over the first two years of life, exacerbated by respiratory viral infections. Many (<50%) return to pediatricians, emergency rooms and pulmonologists with symptoms of respiratory dysfunction (SRD): intermittent or chronic wheezing, poor growth and an excess of upper and lower respiratory tract infections (LRTI). SRD correlate inversely with gestational age and weight at birth and is more common in those with chronic lung disease of prematurity, yet its incidence and severity varies widely among both the prematurely born and those born at term. There is evidence from clinical studies and animal models that risks of LRTI and recurrent wheezing is influenced by gut and respiratory flora and by T cell responses to infection. Information gained from this study will be used to identify characteristics, risk factors and potential mechanisms for early and persistent lung disease in children born at term and born preterm.</p> <p>This Clinical Research Study will investigate the relationships between sequential respiratory viral infections, patterns of intestinal and respiratory bacterial colonization, and adaptive cellular immune phenotypes which are associated with increased susceptibility to respiratory infections and long term respiratory morbidity in preterm and full term infants. We hypothesize that the timing and acquisition of specific viral infections and bacterial species are directly related to respiratory morbidity in the first year of life as defined by SRD and by measures of pulmonary function. We hypothesize that cellular and molecular immuno-maturity are altered due to factors presented by premature birth in such a way as to promote chronic inflammatory and cytotoxic damage to the lung, with subsequent enhanced, damaging responses to infectious agents and environmental irritants. Our preliminary studies demonstrate both feasibility and expertise in mutiparameter immunophenotyping of small volume peripheral blood samples obtained from premature infants including gene expression arrays of flow cytometry sorted cells. We will use new technologies for known viral identification, as well as high-throughput metagenome sequencing of RNA and DNA virus like particles (VLP) to be used for viral discovery in infant respiratory sample and use of high-throughput pyrosequencing (454T) of bacterial 16S rRNA to determine shifts in bacterial community structure, occurring in pre-term (PT) as compared to full term (FT) infants, over the first year of life. Finally, we present statistical approaches to stratify disease risk predictors using multivariate logistic regression modeling approaches. We propose to evaluate T cell phenotypic and functional profiles relative to viral and predominant bacterial exposures according to highly complementary, but independent, Specific Objectives.</p> <p><b>Objective 1</b>: To determine if viral respiratory infections and patterns of respiratory and gut bacterial community structure (microbiome) in prematurely born babies predict the rate and degree of immunologic maturation, and pulmonary dysfunction, measured from birth to 36 weeks corrected gestational age (CGA).</p> <p><b>Objective 2</b>: To determine the relationship between respiratory viral infections and disease severity up to one year CGA, and the lymphocyte (Lc) phenotypes documented at term gestation (birth for term infants and 36 wks/NICU discharge in preterm infants) and at one year CGA. Three secondary outcomes of this objective will be to a) relate the quantity, type and severity of viral infections with pulmonary function at one and three years of life, b) relate the viral community structure to severity of viral infections and c) to seek evidence of modulation of viral susceptibility by bacterial respiratory and gut community structure (microbiome). The relationship of colonization with known and non-identified bacterial species in both the respiratory tract and the gut will be evaluated. </p>
Project description:Viral infections affecting the upper or lower respiratory tract induce mucin production in the epithelial surfaces of the respiratory cells. However, a little is known about how mucins are produced on the surfaces of respiratory epithelial cells and affects viral replication. In the course of the investigation of the cellular responses in the early stage of Influenza A virus (IAV) infection, we found that two miRNAs, miR-221 and miR-17-3p, which target the mRNA of GalNAc transferase 3 (GALNT3), are rapidly down-regulated as early as 1.5 h post-infection.