Project description:We analyzed gamaH2Av ChIP-seq from hand dissected stage 10B and 13 follicle cell nuclei. Egg chambers were dissected from wild-type (OrR) or H2Av[ΔCT] ovaries to assess binding at the Drosophila Follicle Cell Amplicons and across the genome. ChIP-seq of gammaH2Av bound to follicle cell DNA from stage 10B and 13 egg chambers, collected from wild-type (OrR) and H2Av[ΔCT] Drosophila ovaries. Sequences analyzed by Illumina sequencing. Two replicates are included for each ChIP reaction.
Project description:Background/ Aim: Diabetes has substantive co-occurrence with disorders of gut-brain interactions (DGBIs). The pathophysiological and molecular mechanisms linking diabetes and DGBIs are unclear. miRNAs are key regulators of diabetes and gut dysmotility. We investigated whether impaired gut barrier function regulated by a key miRNA, miR-10b-5p, links diabetes and gut dysmotility. Methods: We created a new mouse line using the Mb3Cas12a/Mb3Cpf1 endonuclease to knock out mir-10b globally. Loss of function studies were conducted to characterize diabetes, gut dysmotility, and gut barrier dysfunction phenotypes in these mice. Gain of function studies were conducted by injecting these mice with a miR-10b-5p mimic. Further, we performed miRNA-sequencing analysis from colonic mucosa from mir-10b KO, WT, and miR-10b-5p mimic injected mice to confirm 1) deficiency of miR-10b-5p in KO mice, and 2) restoration of miR-10b-5p expression after the mimic injection. Results: Congenital loss of mir-10b in mice led to the development of hyperglycemia, gut dysmotility, and gut barrier dysfunction. We found increased gut permeability and reduced expression of the tight junction protein Zonula occludens-1 (ZO-1), in the colon of mir-10b KO mice. We further confirmed that patients with diabetes or IBS-C, a known DGBI that is linked to leaky gut, had significantly reduced miR-10b-5p expression. Injection of a miR-10b-5p mimic in mir-10b KO mice rescued these molecular alterations and phenotypes. Conclusion: Our study uncovered a potential pathophysiologic mechanism of gut barrier dysfunction that links both the diabetes and gut dysmotility phenotypes in mice lacking miR-10b-5p. Treatment with a miR-10b-5p mimic reversed the leaky gut, diabetic, and gut dysmotility phenotypes, highlighting the translational potential of miR-10b-5p mimic.
Project description:miR-10b precusor or miR-10b inhibitor was used to overexpress or knockdown miR-10b expression in PANC-1 cells. Microarray analysis was used to characterize the changes in gene expression profiles of PANC-1 upon miR-10b overexpression or knockdown