Project description:The transcription of the cldEFGC gene cluster of Bifidobacterium breve UCC2003 was shown to be induced upon growth on cellodextrins, implicating these genes in the metabolism of these sugars. Phenotypic analysis of a B. breve UCC2003::cldE insertion mutant confirmed that the cld gene cluster is exclusively required for cellodextrin utilization by this bacterium. HPAEC-PAD analysis of medium samples obtained during growth of B. breve UCC2003 on a mixture of cellodextrins revealed its ability to utilize cellobiose, cellotriose, cellotetraose and cellopentaose, with cellotriose representing the preferred substrate. The cldC gene of the cld operon of B. breve UCC2003 was shown to be the first described bifidobacterial β-glucosidase exhibiting hydrolytic activity towards various cellodextrins.
Project description:Bifidobacteria constitute a specific group of commensal bacteria which inhabit the gastrointestinal tract of humans and other mammals. Bifidobacterium breve UCC2003 has previously been shown to utilise several plant-derived carbohydrates that include cellodextrins, starch and galactan. In the current study, we investigate the ability of this strain to utilise the mucin- and human milk oligosaccharide (HMO)-derived carbohydrate, sialic acid. Using a combination of transcriptomic and functional genomic approaches, we identified a gene cluster dedicated to the uptake and metabolism of sialic acid. Furthermore, we demonstrate that B. breve UCC2003 can cross feed on sialic acid derived from the metabolism of 3’ sialyllactose, a HMO, by Bifidobacterium bifidum PRL2010.
Project description:The transcription of the cldEFGC gene cluster of Bifidobacterium breve UCC2003 was shown to be induced upon growth on cellodextrins, implicating these genes in the metabolism of these sugars. Phenotypic analysis of a B. breve UCC2003::cldE insertion mutant confirmed that the cld gene cluster is exclusively required for cellodextrin utilization by this bacterium. HPAEC-PAD analysis of medium samples obtained during growth of B. breve UCC2003 on a mixture of cellodextrins revealed its ability to utilize cellobiose, cellotriose, cellotetraose and cellopentaose, with cellotriose representing the preferred substrate. The cldC gene of the cld operon of B. breve UCC2003 was shown to be the first described bifidobacterial β-glucosidase exhibiting hydrolytic activity towards various cellodextrins. In order to investigate differences in gene expression patterns of B. breve UCC2003 when grown on cellobiose or cellodextrins as compared to growth on glucose, DNA microarray experiments were performed. Total RNA was isolated from B. breve UCC2003 cultures grown on cellobiose, cellodextrins, or glucose (see Materials and Methods). The cultures were harvested at the time points that ensured that B. breve UCC2003 was metabolizing cellobiose or cellodextrins as opposed to the residual glucose present in the cellodextrin preparation. Analysis of the DNA microarray data was obtained from two independent biological replicates.