Project description:Genome wide miRNA expression profiling was performed using Affymetric miRNA v. 3.0 Array on 48 samples which included paired FFPE colon tuomor and metastisized liver and paired normal colon, normal liver). The data set was divided into two categories and identified by tissue source and patient demographics: Tissue (Colon, Liver), Source (Colon Tumor Liver Met, Colon Normal, Liver Normal), Sex (Male, Female), Patient Pair. microRNAs (miRs) are frequently dysregulated in colorectal cancer (CRC) and subsets are correlated with advanced tumor stage and metastasis. Despite this, the development of prognostic biomarkers that predict metastatic potential remain limited. Our study was designed to identify, validate, and elucidate underlying biology imposed by a miR signature that defines and predicts metastatic disease. Genome-wide miR expression profiling was performed on fourteen patient-matched stage IV primary CRC tumors and corresponding liver metastases using microRNA array technology. Based on these results, this miR panel was then validated and evaluated in normal colon tissue (N = 5), early stage (I & II, N = 11) and late stage (Stage III & IV, N = 14) colorectal primary tumors via qRT-PCR.
Project description:We performed whole exome sequencing and copy number analysis for 15 triplets, each comprising normal colorectal tissue, primary colorectal carcinoma, and its synchronous matched liver metastasis. We analyzed the similarities and differences between primary colorectal carcinoma and matched liver metastases in regards to somatic mutations and somatic copy number alterationss (SCNAs). The genomic profiling demonstrated mutations in APC(73%), KRAS (33%), ARID1A and PIK3CA (6.7%) genes between primary colorectal and metastatic liver tumors. TP53 mutation was observed in 47% of the primary samples and 67% in liver metastatic samples. The grouped pairs, in hierarchical clustering showed similar SCNA patterns, in contrast to the ungrouped pairs. Many mutations (including those of known key cancer driver genes) were shared in the grouped pairs. The ungrouped pairs exhibited distinct mutation patterns with no shared mutations in key driver genes. Four ungrouped liver metastasis samples had mutations in DNA mismatch repair genes along with hypermutations and a substantial number of copy number of alterations. Genomically, colorectal and metastatic liver tumors were very similar. However, in a subgroup of patients, there were genetic variations in liver metastases in the loss of DNA mismatch repair genes. Copy number analysis of Affymetrix CytoScanHD arrays was performed for 15 primary colorectal carcinoma and 15 samples of their matched liver metastases. 15 normal samples prepared from each of the patient was used as the reference for the study. Nexus Copy number 6.1 software was used for somatic copy number alteration analysis.
Project description:Comparison of genomic alterations of primary colorectal cancers with liver metastases of the same patient Keywords: array CGH, colorectal cancer, colon cancer, liver metastasis 21 primary colorectal cancers and 21 matched liver metastases hybridized against sex-matched control pools
Project description:Colorectal cancer (CRC) is a commonly occurring cancer worldwide. Metastasis and recurrence are the major causes of cancer-related death. CRC progression is a multistep process, and extensive efforts have been made to identify the genomic and transcriptomic alterations that occur during this process. However, whether primary tumors and metastatic lesions possess distinct biological features remains unclear. We established 74 patient-derived organoids (PDOs) from primary tumors and patient-matched metastatic and recurrent lesions.
Project description:About 50% of colorectal cancer patients develop liver metastases. Patients with metastatic colorectal cancer have 5-year survival rates below 20% despite new therapeutic regimens. Tumor heterogeneity has been linked with poor clinical outcome, but was so far mainly studied via bulk genomic analyses. In this study we performed spatial proteomics via MALDI mass spectrometry imaging on six patient matched CRC primary tumor and liver metastases to characterize interpatient, intertumor and intratumor hetereogeneity. We found several peptide features that were enriched in vital tumor areas of primary tumors and liver metastasis and tentatively derived from tumor cell specific proteins such as annexin A4 and prelamin A/C. Liver metastases of colorectal cancer showed higher heterogeneity between patients than primary tumors while within patients both entities show similar intratumor heterogeneity sometimes organized in zonal pattern. Together our findings give new insights into the spatial proteomic heterogeneity of primary CRC and patient matched liver metastases.
Project description:We performed whole exome sequencing and copy number analysis for 15 triplets, each comprising normal colorectal tissue, primary colorectal carcinoma, and its synchronous matched liver metastasis. We analyzed the similarities and differences between primary colorectal carcinoma and matched liver metastases in regards to somatic mutations and somatic copy number alterationss (SCNAs). The genomic profiling demonstrated mutations in APC(73%), KRAS (33%), ARID1A and PIK3CA (6.7%) genes between primary colorectal and metastatic liver tumors. TP53 mutation was observed in 47% of the primary samples and 67% in liver metastatic samples. The grouped pairs, in hierarchical clustering showed similar SCNA patterns, in contrast to the ungrouped pairs. Many mutations (including those of known key cancer driver genes) were shared in the grouped pairs. The ungrouped pairs exhibited distinct mutation patterns with no shared mutations in key driver genes. Four ungrouped liver metastasis samples had mutations in DNA mismatch repair genes along with hypermutations and a substantial number of copy number of alterations. Genomically, colorectal and metastatic liver tumors were very similar. However, in a subgroup of patients, there were genetic variations in liver metastases in the loss of DNA mismatch repair genes.
Project description:Comparison of gene expression profiles between a primary melanoma and an early metastatic specimen from the same patient will provide essential biological insight into early metastatic processes. The DASL (cDNA mediated annealing, selection, extension and ligation) assay has been used to generate gene expression data for 502 cancer-related genes from very small formalin-fixed sentinel node biopsy (SNB) melanoma samples, this data has been further compared with gene expression of the matched formalin-fixed primary melanoma. Tissue was sampled from twenty-five SNB deposits using laser capture microdissection. The mean number of genes detected using DASL with SNB samples was lower than when using a core of primary melanoma tumor (242 versus 434 genes). A large proportion of SNB samples failed (<240 genes detected) the assay (57.7%). Area of tissue microdissected, RNA concentration and qRT-PCR quality control did not predict performance of samples on the array but age of sampled tissue negatively correlated with number of genes detected (p=0.01). For samples that performed successfully, matched primary samples were available for 10 samples. Gene expression profiles correlated between all matched tumor pairs (Spearman’s rho 0.15-0.80, p<0.01), although a number of genes were differentially expressed between nodal and primary tumors in all tumor pairs. This study demonstrates that the DASL assay can be used to generate gene expression data from small formalin-fixed samples, but not consistently. Differentially expressed genes were identified across 10 matched primary and nodal tumor pairs suggesting that the DASL assay could be used to derive essential biological information about early metastasis.
Project description:Background: Liver metastasis is the major cause of death following a diagnosis of colorectal cancer (CRC) and is a major health burden. Most molecular studies of CRC have profiled primary tumor samples and not the metastasis samples. In this study, we compared the copy number profiles of matched primary and liver metastatic CRC to better understand how the genomic structure of primary CRC differs from the metastasis. This has important implications for whether it is justified to base therapeutic approaches solely on data from the primary tumour. Methods: Paired primary and metastatic tumours from 16 patients and their adjacent normal tissue samples were analyzed using Single-Nucleotide-Polymorphism (SNP) arrays to determine copy number alterations. Nine patients had a synchronous liver metastasis at the time of CRC diagnosis and 7 patients developed a liver metastasis metachronously. Genome-wide chromosomal copy number alterations were assessed, with particular attention to 189 genes known to be somatically altered in CRC and 25 genes that are clinically actionable in CRC. These data were analyzed with respect to the timing of primary and metastatic tissue resection and with exposure to chemotherapy. Results: The genomic divergence with the whole genome duplication correction applied the average percent copy number discordance across all pairs of samples was 22.02%. The pairs of tumour samples collected prior to treatment revealed a significantly higher copy number differences compared to previously treated liver metastasis samples (P=0.024). However, loss of heterozygosity (LOH) acquired in metastasis was significantly higher in previously treated liver metastasis samples compared to treatment naïve liver metastasis samples (P= 0.0064) and which included where KRAS mutation was present in the primary cancers but was not detectable in the metastatic sample following chemotherapy. With regard to 25 genes that are clinically actionable in CRC, amplification of the genes ERBB2, FGFR1, CDK8 or PIK3CA was observed in the metastatic tissue of 4 patients but not in the matched primary CRC. In these cases, knowledge of these metastatic specific alterations could have informed therapeutic decision making and may have improved patient outcome. Conclusion: Intra-patient genomic discrepancies observed between primary and metastatic tissue