Project description:This study investigates extent and functional significance of alternative splicing in Arabidopsis thaliana defense against the bacterial pathogen Pseudomonas syringae pv tomato (Pst). We have provided a detailed characterization of the Arabidopsis thaliana transcriptional response to Pseudomonas syringae infection in both susceptible and resistant hosts. We carried out two independent inoculation experiments (biological replicates) for each treatment. Col-0 is susceptible to virulent Pst DC3000 but has a functional RPS4 resistance gene effective against DC3000 expressing AvrRps4
Project description:We sequenced messenger RNA from mixed stages of the two-spotted spider mite (Tetranychus urticae) reared on bean (Phaseolus vulgaris cv California Red Kidney; the laboratory host plant for mites) and two Arabidopsis thaliana accessions which were considered to either be susceptible (Kondara) or resistant (Bla-2) to mite feeding. This pilot experiment was conducted to assess gene expression differences of mites grown on sensitive versus resistant Arabidopsis accessions, as well as differences in mites feeding on different host species. The expression data was used for gene model validation of genes predicted by EuGene in the spider mite genome and to assess gene expression levels.
Project description:We sequenced messenger RNA from mixed stages of the two-spotted spider mite (Tetranychus urticae) reared on bean (Phaseolus vulgaris cv California Red Kidney; the laboratory host plant for mites) and two Arabidopsis thaliana accessions which were considered to either be susceptible (Kondara) or resistant (Bla-2) to mite feeding. This pilot experiment was conducted to assess gene expression differences of mites grown on sensitive versus resistant Arabidopsis accessions, as well as differences in mites feeding on different host species. The expression data was used for gene model validation of genes predicted by EuGene in the spider mite genome and to assess gene expression levels. Examination of gene expression of spider mites reared on beans and two Arabidopsis accessions (Kondara and Bla-2).
Project description:We have implemented an integrated Systems Biology approach to analyze overall transcriptomic reprogramming and systems level defense responses in the model plant Arabidopsis thaliana during an insect (Brevicoryne brassicae) and a bacterial (Pseudomonas syringae pv. tomato strain DC3000) attack. The main aim of this study was to identify the attacker-specific and general defense response signatures in the model plant Arabidopsis thaliana while attacked by phloem feeding aphids or pathogenic bacteria. Defense responses and networks, unique and specific for aphid or Pseudomonas stresses were identified. Our analysis revealed a probable link between biotic stress and microRNAs in Arabidopsis and thus opened up a new direction to conduct large-scale targeted experiments to explore detailed regulatory links among them. The presented results provide a first comprehensive understanding of Arabidopsis - B. brassicae and Arabidopsis - P. syringae interactions at a systems biology level.
Project description:We have implemented an integrated Systems Biology approach to analyze overall transcriptomic reprogramming and systems level defense responses in the model plant Arabidopsis thaliana during an insect (Brevicoryne brassicae) and a bacterial (Pseudomonas syringae pv. tomato strain DC3000) attack. The main aim of this study was to identify the attacker-specific and general defense response signatures in the model plant Arabidopsis thaliana while attacked by phloem feeding aphids or pathogenic bacteria. Defense responses and networks, unique and specific for aphid or Pseudomonas stresses were identified. Our analysis revealed a probable link between biotic stress and microRNAs in Arabidopsis and thus opened up a new direction to conduct large-scale targeted experiments to explore detailed regulatory links among them. The presented results provide a first comprehensive understanding of Arabidopsis - B. brassicae and Arabidopsis - P. syringae interactions at a systems biology level.
Project description:Belonging to the Carmovirus family, Turnip crinkle virus (TCV) is a positive-strand RNA virus that can infect Arabidopsis. Most Arabidopsis ecotypes are highly susceptible to TCV, except for the TCV resistant line Di-17 derived from ecotype Dijon. Previous studies showed that many of the stress related genes have changed significantly after TCV infection. Besides the virus-triggered genes, small RNAs also play critical roles in plant defense by triggering either transcriptional and/or post-transcriptional gene silencing. In this study, TCV-infected wildtype Arabidopsis thaliana and dcl1-9 mutant plants were subjected to transcriptome and small RNA analysis to investigate the role of DCL1 in virus defense network.
Project description:Belonging to the Carmovirus family, Turnip crinkle virus (TCV) is a positive-strand RNA virus that can infect Arabidopsis. Most Arabidopsis ecotypes are highly susceptible to TCV, except for the TCV resistant line Di-17 derived from ecotype Dijon. Previous studies showed that many of the stress related genes have changed significantly after TCV infection. Besides the virus-triggered genes, small RNAs also play critical roles in plant defense by triggering either transcriptional and/or post-transcriptional gene silencing. In this study, TCV-infected wildtype Arabidopsis thaliana and dcl1-9 mutant plants were subjected to transcriptome and small RNA analysis to investigate the role of DCL1 in virus defense network.
Project description:Some soil bacteria promote plant growth, including Pseudomonas species. With this approach we detected significant changes in Arabidopsis genes related to primary metabolism that were induced by the bacteria.