Project description:Spiders are a highly diverse group of arthropods that occur in most habitats on land. Notably, spiders have significant ecological impact as predators because of their extraordinary prey capture adaptations, venom and silk. Spider venom is among the most heterogeneous animal venoms and has pharmacological applications, while spider silk is characterized by great toughness with potential for biomaterial application. We describe the genome sequences of two spiders representing two major taxonomic groups, the social velvet spider Stegodyphus mimosarum (Araneomorphae), and the Brazilian white-knee tarantula Acanthoscurria geniculata (Mygalomorphae). We annotate genes using a combination of transcriptomic and in-depth proteomic analyses. The genomes are large (2.6 Gb and 6 Gb, respectively) with short exons and long introns and approximately 50% repeats, reminiscent of typical mammalian genomes. Phylogenetic analyses show that spiders and ticks are sister groups outgrouped by mites, and phylogenetic dating using a molecular clock dates separation of velvet spider and tarantula at 270 my. Based on the genomes and proteomes, we characterize the genetic basis of venom and silk production of both species in detail. Venom protein composition differs markedly between the two spiders, with lipases as the most abundant protein in the velvet spider and present only at low concentration in tarantula. Venom in both spiders contains proteolytic enzymes, and our analyses suggest that these enzymes target and process precursor peptides that subsequently mediate the toxic effects of venom. Complete analysis of silk genes reveal a diverse suite of silk proteins in the velvet spider including novel types of spidroins, and dynamic evolution of major ampullate spidroin genes, whereas silk protein diversity in tarantula is far less complex. The difference in silk proteins between species is consistent with a more complex silk gland morpholgy and use of three-dimentional capture webs consisting of multiple silk types in aranomorph spiders.
2014-05-01 | PXD000318 | Pride
Project description:Eleven species of harvestmen (Opiliones) and spiders (Araneae, Mygalomorphae) Genome sequencing
Project description:Spiders are renowned for their efficient capture of flying insects using intricate aerial webs. How the spider nervous systems evolved to cope with this specialized hunting strategy and various environmental clues in an aerial space remains unknown. Here, we report a brain cell atlas of >30,000 single-cell transcriptomes from a web-building spider (Hylyphantes graminicola). Our analysis revealed the preservation of ancestral neuron types in spiders, including the potential coexistence of noradrenergic and octopaminergic neurons, and many peptidergic neuronal types that are lost in insects. By comparing the genome of two newly sequenced plesiomorphic burrowing spiders with three aerial web-building spiders, we found that the positively selected genes in the ancestral branch of web-building spiders were preferentially expressed (42%) in the brain, especially in the three mushroom body-like neuronal types. By gene enrichment analysis and RNAi experiments, these genes were suggested to be involved in the learning and memory pathway and may influence the spiders’ web-building and hunting behavior. Our results provide key sources for understanding the evolution of behavior in spiders and reveal how molecular evolution drives neuron innovation and the diversification of associated complex behaviors.
Project description:Phylogenomic reclassification of the world's most venomous spiders (Mygalomorphae, Atracinae), with implications for venom evolution
Project description:The goal of this study was to lay the groundwork for comparative transcriptomics of sex differences in the brain of wolf spiders, a non-model organism of the pyhlum Euarthropoda, by generating transcriptomes and analyzing gene expression. To examine differences in sex-differential gene expression, short read transcript sequencing and de novo transcriptome assembly were performed. Messenger RNA (mRNA) was isolated from dissected brain tissue of male and female subadult and mature wolf spiders (Schizocosa ocreata). The data consist of short read sequences for the two different life stages in each sex. Computational analyses on these data include de novo transcriptome assembly, using Trinity and CAP3 assembly suites, and differential expression analysis using the edgeR package. Sample-specific and combined transcriptomes, gene annotations, and differential expression results are described in this data note and are available from associated database submissions.
Project description:Orb-weaving spiders use a highly strong, sticky and elastic web to catch their prey. These web properties alone would be enough for the entrapment of prey; however, these spiders may be hiding venomous secrets in the web, which current research is revealing. Here, we provide strong proteotranscriptomic evidence for the presence of toxin/neurotoxin-like proteins, defensins and proteolytic enzymes on the web silk from Nephila clavipes spider. The results from quantitative-based transcriptomics and proteomic approaches showed that silk-producing glands produce an extensive repertoire of toxin/neurotoxin-like proteins, similar to those already reported in spider venoms. Meanwhile, the insect toxicity results demonstrated that these toxic components can be lethal and/or paralytic chemical weapons used for prey capture on the web; and the presence of fatty acids in the web may be responsible mechanism for open the way to the web-toxins for accessing the interior of prey's body, as showed here. Comparative phylogenomic-level evolutionary analyses revealed orthologous genes among two spider groups - Araneomorphae and Mygalomorphae; and the findings showed protein sequences similar to toxins found in the taxa Scorpiones and Hymenoptera in addition to Araneae. Overall, these data represent a valuable resource to further investigate other spider web toxin systems; these data also suggest that N. clavipes web is not a passive mechanical trap for prey capture, but it exerts an active role in prey paralysis/killing using a series of neurotoxins.