Project description:The present study focused on establishing the role of microRNA-139-5p (miRNA-139-5p) in the phenotypic expression of basal tone in rat internal anal sphincter (IAS) vs. lack of tone in truly phasic smooth muscle of anococcygeus (ASM), via RhoA-associated kinase (RhoA/ROCK2).
Project description:A comprehensive –omic, computational, and physiological approach was employed to examine the (previously unexplored) role of microRNAs (miRNAs) as regulators of IAS smooth muscle contractile phenotype and basal tone. MicroRNA profiling, genome wide expression, validation and network analyses were employed to assess changes in mRNA and miRNA expression in IAS smooth muscles from young vs. aging rats. Multiple miRNAs, including rno-miR-1, rno-miR-340-5p, rno-miR-185, rno-miR-199a-3p, rno-miR-200c, rno-miR-200b, rno-miR-31, rno-miR-133a and rno-miR-206 were found to be up-regulated in aging IAS. qRT-PCR confirmed the up-regulated expression of these miRNAs and down regulation of multiple, predicted targets (Eln, Col3a1, Col1a1, Zeb2, Myocd, SRF, Smad1, Smad2, RhoA/ROCK2, Fn1, Sm22-v2, Klf4, and Acta2) involved in regulation of SM contractility. Subsequent studies demonstrated an aging-associated increase in the expression of miR-133a, corresponding decreases in RhoA, ROCK2, MYOCD, SRF and SM22α protein expression, RhoA-signaling, and a decrease in basal and agonist (U-46619 (thromboxane A2 analog))-induced increase in the IAS tone. Moreover, in vitro transfection of miR-133a caused a dose-dependent increase of IAS tone in strips, which was reversed by anti-miR-133a. Lastly, in vivo perianal injection of anti-miR-133a reversed the loss of IAS tone associated with age. This work establishes the important regulatory effect of miRNA-133a on basal and agonist-stimulated IAS tone. Moreover, reversal of age-associated loss of tone via anti-miR delivery strongly implicates miR dysregulation as a causal factor in the aging-associated decrease in IAS tone, and suggests miR-133a is feasible therapeutic target in aging-associated rectoanal incontinence.
Project description:We studied the impact of hsa-miR-139-5p on the protein output by means of an iTRAQ-based approach. First, we established two CAL-62 isogenic cell lines expressing either the mature hsa-miR-139-5p or a non-targeting control upon a doxycycline inducible promoter (PTRE3G-tGFP, Dharmacon). Total proteins of P-tGFP-hsa-miR139-5p untreated or treated with doxycycline (1ug/ml) for 96 and 120 hours were isolated and labeled with iTRAQ® reagent 8-plex. Two independent experiments were performed.
Project description:To evaluate gene expression alteration following miR-139-5p transfection in glioma cells. We find a significant downregulation of two transcriptional factors, E2F3 and HoxA9. Total RNA were extracted from U87, LN229 and U251 glioma cells transfected with miR-139-5p or miRNA negative control.
Project description:Whole transcriptome Identification of direct targets of miR-139-5p using biotinylated pull-downs found that this miRNA has roles in breast cancer invasion and migration. MCF7 cells were transfected with biotinylated miR-139-5p. The miRNAs and target mRNA were pulled down with streptavidin and compared to the input control.
Project description:The MaxiK potassium channel is a key modulator of smooth muscle tone. Due to its calcium and voltage sensitivity, MaxiK is activated following depolarization and Ca2+ mobilization, therefore relaxing the muscle. We investigate the effects of silencing MaxiK for 48h in corpus cavernosuml smooth muscle (CCSM) cells to identify possible mechanisms of compensation through molecular crosstalk between pathways regulating smooth muscle tone.
Project description:The MaxiK potassium channel is a key modulator of smooth muscle tone. Due to its calcium and voltage sensitivity, MaxiK is activated following depolarization and Ca2+ mobilization, therefore relaxing the muscle. We investigate the effects of silencing MaxiK for 48h in corpus cavernosuml smooth muscle (CCSM) cells to identify possible mechanisms of compensation through molecular crosstalk between pathways regulating smooth muscle tone. Human CCSM cells were obtained from explant cell cultures. MaxiK channels were silenced for 48h then total RNA was extracted for hybridization on Affymetrix microarrays. Global gene expression of 48h siRNA treated cells was compared to that of untreated controls.
Project description:Investigation of whole genome gene expression level changes in miR-139-5p mimic-treated EC109 cells, compared to the scrambled negative controls. A four chip study using total RNA recovered from two separate cultures of miR-139-5p mimic-transfected EC109 cells and two separate cultures of scrambled negative control-transfected EC109 cells. Each chip measures the expression level of 44,049 genes from human esophageal cancer cell EC109 with three 60-mer probe pairs per gene.