Project description:Transcriptome analysis of Streptococcus agalactiae (group B Streptococcus) grown under control conditions or coincubated with serine hydroxamate to induce the bacterial stringent response
Project description:Streptococcus agalactiae, also known as Group B streptococcus, emerged in the 1960s as a leading cause of septicemia and meningitis in neonates. It is also an increasing cause of infections in adults with underlying diseases. To characterize transcription start sites (TSS) in the hypervirulent ST17 lineage (strain BM110) we used a differential RNA-seq strategy, based on selective Tobacco Acid Pyrophosphatase (TAP) treatment and adapter ligation, which differentiates primary transcripts and processed RNAs
Project description:Streptococcus agalactiae (Lancefield’s group B Streptococcus, GBS) is a major bacterial species of genus Streptococcus and has medical and veterinary importance by affecting mainly humans (Maione et al., 2005; Johri et al., 2006), cattle (Keefe, 1997) and fish (Mian et al., 2009). The GBS is the most important pathogen for the Nile tilapia, a global commodity of the aquaculture sector, causing outbreaks of septicemia and meningoencephalitis (Hernández et al., 2009; Mian et al., 2009).
Project description:Total RNA was isolated from mid-log phase Streptococcus agalactiae cells deficient in SczA (∆sczA strain GU2791), grown in Todd-Hewitt broth (THB) medium and sequenced using Illumina NextSeq500.
Project description:Total RNA was isolated from mid-log phase Streptococcus agalactiae cells deficient in CovR (∆covR strain GU2400), grown in Todd-Hewitt broth (THB) medium and sequenced using Illumina NextSeq500
Project description:Total RNA was isolated from mid-log phase Streptococcus agalactiae cells deficient in CopY (∆copY strain GU2857), grown in Todd-Hewitt broth (THB) medium and sequenced using Illumina NextSeq500.
Project description:Streptococcus agalactiae, also known as Group B streptococcus, emerged in the 1960s as a leading cause of septicemia and meningitis in neonates. It is also an increasing cause of infections in adults with underlying diseases. To characterize regulatory elements in this species we performed a genome-wide transcription start site (TSS) profiling and whole-transcript sequencing. TSS were identified by using a differential RNA-seq strategy, based on selective Tobacco Acid Pyrophosphatase (TAP) treatment and adapter ligation, which differentiates primary transcripts and processed RNAs. The accuracy and sensitivity of TSS identification were increased by combining differential RNA-seq analyses under eight conditions corresponding to variations in growth conditions and genetic backgrounds. Whole-transcript sequencing used a two-step adaptor ligation-based directional RNA-seq protocol and was performed under two experimental conditions with triplicate experiments to assess variations in gene expression in response to an acid stress
Project description:Total RNA was isolated from mid-log phase Streptococcus agalactiae 874391 wild-type cells grown in Todd-Hewitt broth (THB) medium and sequenced using Illumina NextSeq500