Project description:Motility in the Archaea domain is facilitated by a unique motility structure termed the archaellum. N-glycosylation of the major structural proteins (archaellins) is important for their subsequent incorporation into the archaellum filament. Here, we report the structure of the archaellin glycan from Methanothermococcus thermolithotrophicus, a methanogen which grows optimally at 65°C. Four archaellin genes (flaB1-4) have previously been identified. In gel digestion and LC-MS analysis revealed the identity of the upper band as FlaB1 and the lower band as FlaB3. Examination of the protein sequences for the four archaellins indicated multiple possible N-linked glycosylation sites in each. We observed using mass spectrometry that Mtc. thermolithotrophicus archaellins is posttranslationally modified at multiple sites with an N-linked branched oligosaccharide composed of 7 sugars (1414 Da). NMR analysis of the purified glycan determined the structure to be α-D-glycero-D-manno-Hep3OMe6OMe-(1-3)-[α-GalNAcA3OMe-(1-2)-]-β-Man-(1-4)-[-GalA3OMe4OAc6CMe-(1-4)--GalA-(1-2)-]-α-GalAN-(1-3)-β-GalNAc-Asn. A detailed investigation by HILIC-MS discovered the presence of several, less abundant glycan variants, related to but distinct from the main heptameric glycan. In addition, we confirmed that the S-layer protein is modified with the same heptameric glycan suggesting a common N-glycosylation pathway.
Project description:Methanothermococcus thermolithotrophicus is the only known methanogen that grows on sulfate as its sole sulfur source, uniquely uniting methanogenesis and sulfate reduction. Here we use physiological, biochemical and structural analyses to provide a snapshot of the complete sulfate reduction pathway of this methanogenic archaeon. We find that later steps in this pathway are catalysed by atypical enzymes. PAPS (3'-phosphoadenosine 5'-phosphosulfate) released by APS kinase is converted into sulfite and 3'-phosphoadenosine 5'-phosphate (PAP) by a PAPS reductase that is similar to the APS reductases of dissimilatory sulfate reduction. A non-canonical PAP phosphatase then hydrolyses PAP. Finally, the F420-dependent sulfite reductase converts sulfite to sulfide for cellular assimilation. While metagenomic and metatranscriptomic studies suggest that the sulfate reduction pathway is present in several methanogens, the sulfate assimilation pathway in M. thermolithotrophicus is distinct. We propose that this pathway was 'mix-and-matched' through the acquisition of assimilatory and dissimilatory enzymes from other microorganisms and then repurposed to fill a unique metabolic role.
Project description:Hydrogenotrophic methanogens are ubiquitous chemoautotrophic archaea inhabiting globally distributed deep-sea hydrothermal vent ecosystems and associated subseafloor niches within the rocky subseafloor, yet little is known about how they adapt and diversify in these habitats. To determine genomic variation and selection pressure within methanogenic populations at vents, we examined five Methanothermococcus single cell amplified genomes (SAGs) in conjunction with 15 metagenomes and 10 metatranscriptomes from venting fluids at two geochemically distinct hydrothermal vent fields on the Mid-Cayman Rise in the Caribbean Sea. We observed that some Methanothermococcus lineages and their transcripts were more abundant than others in individual vent sites, indicating differential fitness among lineages. The relative abundances of lineages represented by SAGs in each of the samples matched phylogenetic relationships based on single-copy universal genes, and genes related to nitrogen fixation and the CRISPR/Cas immune system were among those differentiating the clades. Lineages possessing these genes were less abundant than those missing that genomic region. Overall, patterns in nucleotide variation indicated that the population dynamics of Methanothermococcus were not governed by clonal expansions or selective sweeps, at least in the habitats and sampling times included in this study. Together, our results show that although specific lineages of Methanothermococcus co-exist in these habitats, some outcompete others, and possession of accessory metabolic functions does not necessarily provide a fitness advantage in these habitats in all conditions. This work highlights the power of combining single-cell, metagenomic, and metatranscriptomic datasets to determine how evolution shapes microbial abundance and diversity in hydrothermal vent ecosystems.