Project description:For malaria transmission, the parasite must undergo sexual differentiation into mature gametocytes. However, the molecular basis for this critical transition in the parasites life cycle is unknown. Six previously uncharacterized genes, Pfg14.744, Pfg14.745, Pfg14.748, Pfg14.763, Pfg14.752 and Pfg6.6 that are members of a 36 gene Plasmodium falciparum-specific subtelomeric superfamily were found to be expressed in parasites that are committed to sexual development as suggested by co-expression of Pfs16 and Pfg27. Northern blots demonstrated that Pfg14.744 and Pfg14.748 were first expressed before the parasites differentiated into morphologically distinct gametocytes, transcription continued to increase until stage II gametocytes were formed and then rapidly decreased. Immunofluorescence assays indicated that both proteins were only produced in the subpopulation of ring stage parasites that are committed to gametocytogenesis and both localized to the parasitophorous vacuole (PV)b of the early ring stage parasites. As the parasites continued to develop Pfg14.748 remained within the parasitophorous vacuole, while Pfg14.744 was detected in the erythrocyte. The 5' flanking region of either gene alone was sufficient to drive early gametocyte specific expression of green fluorescent protein (GFP). In parasites transfected with a plasmid containing the Pfg14.748 5' flanking region immediately upstream of GFP, fluorescence was observed in a small number of schizonts the cycle before stage I gametocytes were observed. This expression pattern is consistent with commitment to sexual differentiation prior to merozoite release and erythrocyte invasion. Further investigation into the role of these genes in the transition from asexual to sexual differentiation could provide new strategies to block malaria transmission. Microarray analysis was used to compare two clones derived from Plasmodium falciparum strain 3D7 parasites that differ in their ability to undergo gametocytogenesis. Clone G+ produces gametocytes and clone G- produces very few if any gametocytes. RNA was harvested from the cultures when the asexual parasitemia was 0.9-1.48% (day 4) (n=4) after setting up the gametocyte cultures and 5.2-5.58% (day 6) (n=4) prior to the appearance of morphologically distinct gametocytes and used to generate cDNA that was labeled with Cy3 or Cy5 and hybridized to the Plasmodium falciparum 70 mer oligonucleotide microarray developed by DeRisi and co-workers.
Project description:Investigation of genome-wide gene expression changes in Plasmodium falciparum overexpressing PfMYST compared to the wild-type strain 3D7. After introducing a single copy of the full-length PfMYST expression cassette into the parasite genome, parasites showed higher levels of H4-K5, -K8, and -K12 acetylation, a faster progression of intraerythrocytic developmental cycle (IDC), and shorter schizont development time (duration), which led to significantly fewer merozoites developed in mature schizonts than the control. The parasites with PfMYST overexpression substantially increased the resistance to DNA-damaging agents. These findings were published in Miao, Fan et al Mol Microbiol 2010 (PMID: 20807207). To understand the underlying mechanisms, we studied changes in the transcriptomes during the IDC by expression microarray.
Project description:In eukaryotes, the chromatin architecture has a pivotal role in regulating all DNA-related processes. For P. falciparum, the causative agent of human malaria, the nucleosome landscape of the extremely AT-rich intergenic regulatory regions is largely unexplored. With the aid of a highly controlled MNase-seq procedure we reveal how positioning of nucleosomes provides a structural and regulatory framework to the transcriptional unit. We observe strong positioning of nucleosomes around splice sites that could aid co-transcriptional splicing events. In addition, nucleosome depleted regions are apparent hallmarks of transcription start sites (TSSs) and may support pre-initiation complex assembly. Moreover, we reveal nucleosome occupancy dynamics on strong TSSs during intraerythrocytic development, which correlate with gene expression changes and we observe a characteristic nucleosome architecture of functional - but not inert - TGCATGCA DNA motifs. Collectively, these findings highlight the regulatory capacity of the nucleosome landscape of this deadly human pathogen. Mnase-seq during the intra-erythrocytic asexual cycle of Plasmodium falciparum var2csa-panned 3D7 parasites for 8 time-points, every 5 hours starting from 5 hours post invasion until 40 hours post-invasion (T5-T40). Cycle length of these parasites is ~43 hours, synchronicity window is ~ 8 hours. T40 has 2 technical replicates (independent digestions; T40A, T40B). Additionally, pellet control sample (T15), histone H4-ChIP control (T40A) and sonicated and amplified genomic DNA. Chromatin was digested using a combined MNase + exonuclease III treatment. Libraries were prepared according to a Plasmodium-optimized library preparation procedure including KAPA polymerase-mediated PCR amplification. Strand-specific RNA-seq for expression quantification during the intra-erythrocytic asexual cycle of Plasmodium falciparum var2csa-panned 3D7 parasites for 8 time-points every 5 hours starting from 5 hours post invasion invasion until 40 hours post-invasion (T5-T40). Cycle length of these parasites is ~43 hours, synchronicity window is ~ 8 hours. These samples are originating from the exact same batch of parasites as are the MNase-Seq libraries. Libraries were prepared according to a Plasmodium-optimized library preparation procedure including KAPA polymerase-mediated PCR amplification.
Project description:Transcriptional profiling of transgenic P. falciparum asexual blood stage parasites of the transgenic strain 3D7/DDGFP-PfAP2-HC at five time points during intra-erythrocytic parasite development. The DD (FKBP destabilisation domain) allows for the conditional expression of fusion proteins: DD fusion proteins are rapidly degraded or stably expressed in absence or presence of the stabilising ligand Shield-1, respectively (Banaszynski LA, Chen LC, Maynard-Smith LA, Ooi AG, Wandless TJ. A rapid, reversible, and tunable method to regulate protein function in living cells using synthetic small molecules.Cell. 2006 Sep 8;126(5):995-1004). The goal of this experiment was to identify genes differentially expressed in DDGFP-PfAP2-HC-expressing compared to DDGFP-PfAP2-HC-depleted parasites during the intra-erythtrocytic cell cycle.
Project description:ChIP-seq experiments were performed for the putative telomere repeat-binding factor (PfTRF) in the malaria parasite Plasmodium falciparum strain 3D7. The gene encoding this factor (PF3D7_1209300) was endogenously tagged with either a GFP- or a 3xHA-tag and these transgenic parasite lines were used in ChIP-sequencing experiments. Sequencing of the ChIP and input libraries showed enrichment of PfTRF at all telomere-repeat containing chromosome ends (reference genome Plasmodium falciparum 3D7 from PlasmoDB version 6.1) as well as in all upsB var promoters.In addition,PfTRF was enriched at seven additional, intra-chromosomal sites and called in the PfTRF-HA ChIP-seq only. Plasmodium falciparum 3D7 parasites were generated with -GFP or -3xHA C-terminal tagged TRF (PF3D7_1209300). Nuclei were isolated from formaldehyde cross-linked schizont-stage transgenic parasites and used to prepare chromatin. Chromatin immunoprecipitations were performed using mouse anti-GFP (Roche Diagnostics, #11814460001) or rat anti-HA 3F10 (Roche Diagnostics, #12158167001). Sequencing libraries were prepared according to a Plasmodium-optimized library preparation procedure including KAPA polymerase-mediated PCR amplification.
Project description:The time course transcriptome were generated in Plasmodium falciparum parasite of 3D7 strain by collecting RNA samples every 2 hours during 48 hours of the full intraerythrocytic developmental cycle.
Project description:This experiment characterizes the transcriptome of the human malaria parasite, P. falciparum at 8 different stages of the intraerythrocytic cycle Examination of polyA selected RNA in Plasmodium falciparum 3D7 strain at 8 different stages using RNA-seq
Project description:Background: The cytoadherence of Plasmodium falciparum is thought to be mediated by variant surface antigens (VSA), encoded by var, rif, stevor and pfmc-2tm genes. The last three families have rarely been studied in the context of cytoadherence. As most VSA genes are unique, the variability among sequences has impeded the functional study of VSA across different P. falciparum strains. However, many P. falciparum genomes have recently been sequenced, allowing the development of specific microarray probes to each VSA gene. Methods: All VSA sequences from the HB3, Dd2 and IT/FCR3 genomes were extracted using HMMer. Oligonucleotide probes were designed with OligoRankPick and added to the 3D7-based microarray chip. As a proof of concept, IT/R29 parasites were selected for and against rosette formation and the transcriptomes of isogenic rosetting and non-rosetting parasites were compared by microarray. Results: From each parasite strain 50-56 var genes, 125-132 rif genes, 26-33 stevor genes and 3-8 pfmc-2tm genes were identified. The ability of the VSA-supplemented microarray chip to detect cytoadherence-related genes was assessed using P. falciparum clone IT/R29, in which rosetting is known to be mediated by PfEMP1 encoded by ITvar9. Whole transcriptome analysis showed that the most highly upregulated gene in rosetting parasites was ITvar9 (19 to 429-fold upregulated over six time points). Only one rif gene (IT4rifA_042) was upregulated by more than 4-fold (5-fold at 12 hours post-invasion), and no stevor or pfmc-2tm genes were upregulated by more than 2-fold. 49 non-VSA genes were upregulated in rosetting parasites by more than 3-fold in at least two time-points, although none as markedly as ITvar9. Conclusions: We demonstrate that the VSA of newly sequenced P. falciparum strains can be added to the 3D7-based microarray chip, allowing the analysis of the entire transcriptome of multiple strains. For the rosetting clone IT/R29, the striking transcriptional upregulation of ITvar9 was confirmed, and the data did not support the involvement of other VSA families in rosette formation.
Project description:The human malaria parasite Plasmodium falciparum has a complex and multi-stage life cycle that requires extensive immune escape, invasion of human liver and blood cells, and transmission through the female Anopholes mosquito. To date, the regulatory elements orchestrating these critical parasite processes remain largely unknown. However, there is mounting evidence across a broad range of species that intergenic long non-coding RNA (lncRNA) and antisense RNA can regulate chromatin state and gene expression. To pursue such functional roles for lncRNAs in P. falciparum, we performed deep, strand-specific RNA sequencing of fifteen non-polyA-selected blood stage samples, and assembled and characterized the properties of 660 intergenic lncRNAs, 474 antisense RNAs, and 1381 circular RNAs (circRNAs). We further validated the non-canonical splice junctions of seven P. falciparum circRNAs, an emerging class of non-coding RNA with regulatory potential and unexplored functional significance in P. falciparum. Our comprehensive analysis of P. falciparum lncRNAs indicates a functional role for these transcripts; P. falciparum intergenic lncRNAs and antisense RNAs are developmentally regulated in a similar periodic fashion to annotated transcripts, and sense-antisense pair expression is significantly anti-correlated. Notable outliers include intergenic lncRNAs that strongly peak in expression during parasite invasion, such as the telomere-associated lncRNA-TARE family, antisense transcripts that drop in expression during parasite invasion, and a highly correlated, multi-exonic, antisense counterpart to P. falciparum Gametocyte Developmental Protein 1 (PfGDV1). Taken together, our results present over two thousand P. falciparum intergenic lncRNA, antisense, and circRNA candidates and highlight promising P. falciparum lncRNAs for future investigation. We harvested fifteen blood stage samples from two biological replicate time-courses. The first time-course comprised of eleven samples that finely map temporal changes during P. falciparum blood stage development. We harvested samples over 56 hours, at roughly 4-hour time intervals, from a tightly synchronized P. falciparum 3D7 parasite population. As the asexual blood stage is an approximately 48-hour cycle, this time-course allowed us to profile gene expression during RBC rupture and parasite invasion. The second time-course comprised of four samples harvested in synchronous P. falciparum 3D7 parasites approximately four hours before and after the ring to trophozoite and trophozoite to schizont morphological stage transitions, which occur during the blood stage at 24 hours post invasion (hpi) and 36 hpi, respectively.
Project description:Calcium is a universal second messenger molecule which plays a significant role in several biological processes. Presence of calcium sensors (calmodulins) and calcium-dependent protein kinases in Plasmodium species suggests an important role of calcium-dependent signaling pathways in the regulation of cellular processes in the malaria parasites. Evidence for the transcriptional response of control Plasmodium falciparum asexual blood stages not treated with the calcium ionophores, A23187 and ionomycin has been presented here. P. falciparum 3D7 strain was cultured as described by Bozdech Z, Llinas M, Pulliam BL, Wong ED, Zhu J, DeRisi JL: The transcriptome of the intraerythrocytic developmental cycle of Plasmodium falciparum. PLoS Biol 2003, 1(1):E5. Total RNA from each of the time points was isolated and aminoallyl-cDNA was synthesized using reverse transcriptase system (Fermentas). cDNA made from the untreated parasites were labeled with Cy5 (GE-Amersham). A reference pool was made by mixing equal amount of cDNA from the parasites collected at 6 hours interval throughout the 48 hours life cycle and was labeled with Cy3 (GE-Amersham). The samples were then hybridized on a spotted cDNA chip platform comprising 10166 MOEs representing 5363 coding sequences as described in Hu G, Cabrera A, Kono M, Mok S, Chaal BK, Haase S, Engelberg K, Cheemadan S, Spielmann T, Preiser PR, Gilberger TW, Bozdech Z: Transcriptional profiling of growth perturbations of the human malaria parasite Plasmodium falciparum. Nat Biotechnol, 2009. 28(1): p. 91-8. The data was normalized and filtered with the condition, signal intensity>background intensity + 2 SD of background intensity) using NOMAD.