Project description:Antibiotics have long-lasting consequences on the gut microbiota with the potential to impact host physiology and health. However, little is known about the transgenerational impact of an antibiotic-perturbed microbiota. Here we demonstrated that adult pregnant female mice inoculated with a gut microbial community shaped by antibiotic exposure passed on their dysbiotic microbiota to their offspring. This dysbiotic microbiota remained distinct from controls for at least 5 months in the offspring without any continued exposure to antibiotics. By using IL-10 deficient mice, which are genetically susceptible to colitis, we showed mice that received an antibiotic-perturbed gut microbiota from their mothers had increased risk of colitis. Taken together, our findings indicate that the consequences of antibiotic exposure affecting the gut microbiota can extend to a second generation.
Project description:Early-life antibiotic exposure perturbs the intestinal microbiota, alters innate intestinal immunity, and accelerates type 1 diabetes development in the NOD mouse model. Here we found that maternal cecal microbiota transfer (CMT) to NOD mice with early-life antibiotic perturbation partially rescued the induced T1D acceleration. The restoration effects on the intestinal microbiome were substantial and persistent, remediating the antibiotic-depleted diversity, relative abundance of particular taxa, and metabolic pathways. CMT also protected against perturbed cecal and serum metabolites and normalized innate and adaptive immune effectors. CMT restored patterns of ileal microRNA and histone regulation of gene expression and exon-splicing. Based on the analyses of experimental data, we propose an innate intestinal immune network involving CD44, TLR2, and Reg3g, as well as their multiple microRNA and epigenetic regulators that sense intestinal signaling by the gut microbiota. This regulation affects downstream immunological tone, leading to protection against the tissue-specific T1D injury.
Project description:Broad-spectrum antibiotics are frequently prescribed to children. The period of early-childhood represents a time where the developing microbiota may be more sensitive to environmental perturbations, which thus might have long-lasting host consequences. We hypothesized that even a single early-life broad-spectrum antibiotic course at a therapeutic dose (PAT) leads to durable alterations in both the gut microbiota and host immunity. In C57BL/6 mice, a single early-life tylosin (macrolide) course markedly altered the intestinal microbiome, and affected specific intestinal T-cell populations and secretory IgA expression, but PAT-exposed adult dams had minimal immunologic alterations. No immunological effects were detected in PAT-exposed germ-free animals; indicating that microbiota are required for the observed activities. Transfer of PAT-perturbed microbiota led to delayed sIgA expression indicating that the altered microbiota is sufficient to transfer PAT-induced effects. PAT exposure had lasting and transferable effects on microbial community network structure. Together these results indicate the impact of a single therapeutic early-life antibiotic course altering the microbiota and modulating host immune phenotypes that persist long after exposure has ceased.
Project description:Broad-spectrum antibiotics are frequently prescribed to children. The period of early-childhood represents a time where the developing microbiota may be more sensitive to environmental perturbations, which thus might have long-lasting host consequences. We hypothesized that even a single early-life broad-spectrum antibiotic course at a therapeutic dose (PAT) leads to durable alterations in both the gut microbiota and host immunity. In C57BL/6 mice, a single early-life tylosin (macrolide) course markedly altered the intestinal microbiome, and affected specific intestinal T-cell populations and secretory IgA expression, but PAT-exposed adult dams had minimal immunologic alterations. No immunological effects were detected in PAT-exposed germ-free animals; indicating that microbiota are required for the observed activities. Transfer of PAT-perturbed microbiota led to delayed sIgA expression indicating that the altered microbiota is sufficient to transfer PAT-induced effects. PAT exposure had lasting and transferable effects on microbial community network structure. Together these results indicate the impact of a single therapeutic early-life antibiotic course altering the microbiota and modulating host immune phenotypes that persist long after exposure has ceased.
Project description:Early-life antibiotic exposure perturbs the intestinal microbiota, alters innate intestinal immunity, and accelerates type 1 diabetes development in the NOD mouse model Here we found that maternal cecal microbiota transfer (CMT) to NOD mice with early-life antibiotic perturbation partially rescued the induced T1D acceleration The restoration effects on the intestinal microbiome were substantial and persistent, remediating the antibiotic-depleted diversity, relative abundance of particular taxa, and metabolic pathways CMT also protected against perturbed cecal and serum metabolites and normalized innate and adaptive immune effectors CMT restored patterns of ileal microRNA and histone regulation of gene expression and exon-splicing Based on the analyses of experimental data, we propose an innate intestinal immune network involving CD44, TLR2, and Reg3g, as well as their multiple microRNA and epigenetic regulators that sense intestinal signaling by the gut microbiota This regulation affects downstream immunological tone, leading to protection against the tissue-specific T1D injury
Project description:Early-life antibiotic exposure perturbs the intestinal microbiota, alters innate intestinal immunity, and accelerates type 1 diabetes development in the NOD mouse model. Here we found that maternal cecal microbiota transfer (CMT) to NOD mice with early-life antibiotic perturbation partially rescued the induced T1D acceleration. The restoration effects on the intestinal microbiome were substantial and persistent, remediating the antibiotic-depleted diversity, relative abundance of particular taxa, and metabolic pathways. CMT also protected against perturbed cecal and serum metabolites and normalized innate and adaptive immune effectors. CMT restored patterns of ileal microRNA and histone regulation of gene expression and exon-splicing. Based on the analyses of experimental data, we propose an innate intestinal immune network involving CD44, TLR2, and Reg3g, as well as their multiple microRNA and epigenetic regulators that sense intestinal signaling by the gut microbiota. This regulation affects downstream immunological tone, leading to protection against the tissue-specific T1D injury.
Project description:Here we asked whether the single early-life (pup day of life P5-P10) antibiotic pulse was sufficient to enhance Type-1 Diabetes (T1D) in Non Obese Diabetic (NOD) mice. Two sets of experimental samples were analyzed for changes in intestinal pathway expression using the NOD mouse model and Pulsed Antibiotic Therapy (PAT). NODPAT sought to describe the intestinal changes related to early life PAT treatment while the RESTORE experiment sought to restore an antibiotic-perturbed host and measure the intestinal expression changes over time. We provide evidence that maternal microbiota provides partial restoration of both the altered pup microbiota and its immunological phenotypes.
Project description:Intestinal microbial dysbiosis is associated with Crohn’s disease (CD). However, the mechanisms leading to the chronic mucosal inflammation that characterizes this disease remain unclear. To evaluate causality and mechanisms of disease, we conducted a systems level study of the interactions between the gut microbiota and host in new-onset pediatric patients. We report an altered host proteome in CD patients indicative of impaired mitochondrial functions. A downregulation of mitochondrial proteins implicated in H2S detoxification was observed, while the relative abundance of H2S microbial producers was increased. Network correlation analysis identified Atopobium parvulum as the central hub of H2S producers. Gnotobiotic and conventionalized colitis-susceptible interleukin-10-deficient (Il10-/-) mice demonstrated that A. parvulum induced colitis, a phenotype requiring the presence of the intestinal microbiota. Administration of bismuth, a H2S scavenger, prevented A. parvulum-induced colitis in Il10-/- mice. This study identified host-microbiota interactions that are disturbed in CD patients providing mechanistic insights on CD pathogenesis.