Project description:In this dataset, we studied human dopaminergic neuron differenation from induced pluripotent stem cells (iPSCs). We included the gene expression data obtained from iPSCs and iPSC-derived dopaminergic neurons. This dataset is used to predict chromatin accessibility in iPSCs and iPSC-derived neurons using BIRD (Big data Regression for predicting DNase I hypersensitivity).
Project description:Induced pluripotent stem cells (iPSCs) harbor great promise for in vitro generation of disease-relevant cell types, such as mesodiencephalic dopaminergic (mdDA) neurons involved in Parkinson’s disease. Although iPSC-derived midbrain DA neurons have been generated, detailed genetic and epigenetic characterization of such neurons is still lacking. The goal of this study is to examine the authenticity of iPSC-derived DA neurons obtained by established protocols. We FACS-purified mdDA (Pitx3gfp/+) neurons derived from mouse iPSCs and primary mdDA (Pitx3gfp/+) neurons to analyze and compare their genetic and epigenetic features. Although iPSC-derived DA neurons largely adopt characteristics of their in-vivo counterparts, relevant deviations in global gene expression and DNA methylation were found. Hypermethylated genes, mainly involved in neurodevelopment and basic neuronal functions, consequently showed reduced expression levels. Such abnormalities should be addressed as they might affect unambiguous long-term functionality and hamper the potential of iPSC-derived DA neurons for in-vitro disease modeling or cell-based therapy. RRBS methylation maps were generated for iPSCs cells, dopaminergic neurons derived from iPSCs and primary mesodiencephalic dopaminergic neurons
Project description:ATAC-seq samples from 2 species and 2 cell types were generated to study cis-regulatory element evolution. Briefly, previously generated urinary stem cell derived iPS-cells (Homo sapiens) of 2 human individuals and fibroblast derived cynomolgus macaque iPSCs (Macaca fascicularis) of 2 individuals (Geuder et al. 2021) were differentiated to neural progenitor cells via dual-SMAD inhibition as three-dimensional aggregation culture (Chambers et al. 2009; Ohnuki et al. 2014). The NPC lines were cultured in NPC proliferation medium and passaged 2 - 4 times until they were dissociated and subjected to ATAC-seq together with the respective iPSC clones. ATAC-seq libraries were generated using the Omni-ATAC protocol (Corces et al. 2017) with minor modifications.
Project description:We studied human induced pluripotent stem cells (iPSCs)-derived dopaminergic (DA) neuron populations carrying CNVs of 16p11.2 duplication and 16p11.2 deletion.
Previously, healthy human iPSCs were edited using CRISPR-Cas9 method to produce isogenic lines with 16p11.2 deletion or 16p11.2 duplication. We differentiated these
isogenic iPSC lines into neural precursor cells and dopaminergic neurons and collected RNA samples for gene expression analyses with RNA sequencing. Our aim was to
identify differences in the expression of synaptic markers, neuronal differentiation markers, and neuron specific receptors that affect functionality of the neurons with 16p11.2
CNVs compared to isogenic control lines. We also studied physiological properties of these isogenic iPSC-derived DA neurons with 16p11.2 CNVs. In addition, we studied
expression and activation of a specific molecular pathway KCTD13-RHOA in the iPSC derived DA neuron populations with 16p11.2 CNVs.
Project description:The variation among induced pluripotent stem cells (iPSCs) in their differentiation capacity to specific lineages is frequently attributed to somatic memory. In this study, we compared hematopoietic differentiation capacity of 35 human iPSC lines derived from four different tissues and four embryonic stem cell lines. The analysis revealed that hematopoietic commitment capacity (PSCs to hematopoietic precursors) is correlated with the expression level of the IGF2 gene independent of the iPSC origins. In contrast, maturation capacity (hematopoietic precursors to mature blood) is affected by iPSC origin; blood-derived iPSCs showed the highest capacity. However, some fibroblast-derived iPSCs showed higher capacity than blood-derived clones. Tracking of DNA methylation changes during reprogramming reveals that maturation capacity is highly associated with aberrant DNA methylation acquired during reprogramming, rather than the types of iPSC origins. These data demonstrated that variations in the hematopoietic differentiation capacity of iPSCs are not attributable to somatic memories of their origins. Methyl-seq analysis for undifferentiated induced pluripotent stem cell (iPSC) lines (n = 21), human dermal fibroblast (HDF, n = 1), human peripheral blood (n = 1), and human keratinocyte (n = 1), and ATAC-seq analysis for 2 iPSC lines and an embryonic stem cell (ESC) line with two different culture conditions. CTCF-ChIP-seq analysis for an ESC line.