Project description:Hybridization between Cottus rhenanus and C. perifretum has resulted in an evolutionary young hybrid lineage of invasive Cottus that has colonized a new habitat where the parental species are not found (Nolte et al. 2005; Proc. R. Soc. B 272: 2379–2387). This CGH array was designed to screen for copy number variation among Cottus species and to find gene duplicates that are unique to the hybrid lineage (see also Dennenmoser et al. 2017; Copy number increases of transposable elements and protein coding genes in an invasive fish of hybrid origin).
Project description:Many human cancers present as multi-focal lesions. Understanding the clonal origin of multi-focal cancers is of both etiological and clinical importance. The molecular basis of multi-focal prostate cancer has previously been explored using only a limited number of isolated markers and, although independent origin is widely believed, the clonal origin of multi-focal prostate cancer is still debatable. We attempted to address clonal origin using a genome-wide copy-number analysis of individual cancer and high-grade prostatic intraepithelial neoplasia (HGPIN) lesions. Using Affymetrix array 6.0 copy-number analysis, we compared the genomic changes detected in 54 individual cancer and HGPIN lesions, isolated from 20 clinically localized prostate cancer cases. Identical genomic copy-number changes, shared by all same-case cancer foci, were detected in all 16 informative multi-tumor cases. In addition, both HGPIN lesions in the two multi-HGPIN cases available shared identical genomic changes. Commonly known genomic alterations, including losses at 6q15, 8p21.3-8p21.2, 10q23.2-10q23.31, 13q21.31-13q21.32, 16q22.3, 16q23.2-16q23.3 and 21q22.2-21q22.3 regions and gain of 8q24.3 were the most frequently detected changes in this multi-focal prostate cancer study, occurring in all same-case foci in at least one case. Microarray data were confirmed by fluorescence in situ hybridization in selected foci. Our high-resolution genome-wide copy-number data suggest that many multi-focal cases derive from a single prostate cancer precursor clone and that this precursor may give rise to separate HGPIN foci, which through clonal expansion may progress to multi-focal invasive prostate cancer. These findings, which demonstrate the monoclonal origin of multi-focal prostate cancer, should significantly enhance our understanding of prostate carcinogenesis and potentially improve clinical management of the disease.
Project description:Many human cancers present as multi-focal lesions. Understanding the clonal origin of multi-focal cancers is of both etiological and clinical importance. The molecular basis of multi-focal prostate cancer has previously been explored using only a limited number of isolated markers and, although independent origin is widely believed, the clonal origin of multi-focal prostate cancer is still debatable. We attempted to address clonal origin using a genome-wide copy-number analysis of individual cancer and high-grade prostatic intraepithelial neoplasia (HGPIN) lesions. Using Affymetrix array 6.0 copy-number analysis, we compared the genomic changes detected in 54 individual cancer and HGPIN lesions, isolated from 20 clinically localized prostate cancer cases. Identical genomic copy-number changes, shared by all same-case cancer foci, were detected in all 16 informative multi-tumor cases. In addition, both HGPIN lesions in the two multi-HGPIN cases available shared identical genomic changes. Commonly known genomic alterations, including losses at 6q15, 8p21.3-8p21.2, 10q23.2-10q23.31, 13q21.31-13q21.32, 16q22.3, 16q23.2-16q23.3 and 21q22.2-21q22.3 regions and gain of 8q24.3 were the most frequently detected changes in this multi-focal prostate cancer study, occurring in all same-case foci in at least one case. Microarray data were confirmed by fluorescence in situ hybridization in selected foci. Our high-resolution genome-wide copy-number data suggest that many multi-focal cases derive from a single prostate cancer precursor clone and that this precursor may give rise to separate HGPIN foci, which through clonal expansion may progress to multi-focal invasive prostate cancer. These findings, which demonstrate the monoclonal origin of multi-focal prostate cancer, should significantly enhance our understanding of prostate carcinogenesis and potentially improve clinical management of the disease. Copy number analysis of Affymetrix SNP 6.0 array was performed for a total of 48 cancer and HGPIN lesions from 18 prostate cancer cases. All samples have case-matched normal controls. PL = high grade PIN from left side, PR = high grade PIN from right side, PM = high grade PIN from middle of the tissue, TL = tumour from left side, TR = tumour from right side.
Project description:Copy-number variants (CNVs) are large-scale amplifications or deletions of DNA that can drive rapid adaptive evolution and result in large-scale changes in gene expression. Whereas alterations in the copy number of one or more genes within a CNV can confer a selective advantage, other genes within a CNV can decrease fitness when their dosage is changed. Dosage compensation - in which the gene expression output from multiple gene copies is less than expected - is one means by which an organism can mitigate the fitness costs of deleterious gene amplification. Previous research has shown evidence for dosage compensation at both the transcriptional level and at the level of protein expression; however, the extent of compensation differs substantially between genes, strains, and studies. Here, we investigated sources of dosage compensation at multiple levels of gene expression regulation by defining the transcriptome, translatome and proteome of experimentally evolved yeast (Saccharomyces cerevisiae) strains containing adaptive CNVs.
Project description:Although information on the molecular pathogenesis of Waldenström’s Macroglobulinemia (WM) has greatly improved in recent years, the exact cellular origin and the mechanisms behind WM transformation from IgM MGUS remain undetermined. Here, we undertook an integrative phenotypic, molecular and genomic approach to study clonal B-cells from newly-diagnosed patients with IgM MGUS (n=22), smoldering (n=17), and symptomatic WM (n=10). Through principal-component-analysis of multidimensional flow cytometry data, we demonstrated overlapping phenotypic profiles between clonal B-cells from IgM MGUS, smoldering and symptomatic WM patients. Similarly, virtually no genes were significantly deregulated between FACS-sorted clonal B-cells from the three disease stages. Interestingly, while the transcriptome of the Waldenström’s clone was highly deregulated as compared to CD25-CD22+ normal B-cells, significantly less genes were differentially expressed and specific WM pathways down-regulated while comparing the transcriptome of the Waldenström’s clone vs. its normal phenotypic counterpart: CD25+CD22+dim B-cells. The frequency of specific copy number abnormalities [+4, del(6q23.3-6q25.3), +12, and +18q11-18q23] progressively increased from IgM MGUS and smoldering WM vs. symptomatic WM (18% vs. 20% and 73%, respectively; P =.008), suggesting a multistep transformation of clonal B-cells that albeit benign (i.e.: IgM MGUS and smoldering WM), already harbor the phenotypic and molecular signatures of the malignant Waldenström’s clone. Copy number analysis using the Affymetrix CytoScan 750K Array to study clonal B-cells from newly-diagnosed patients with IgM MGUS, smoldering, and symptomatic WM. Peripheral T-cells from paired and unpaired controls were also assessed.