Project description:Expression and differential expression analysis of milk samples from healthy and diseased diary cows. Diseases were grouped by their occurrence in the mammary gland or extra-mammary. Furthermore, the diseases were classified by their severity. All cows were examined thoroughly by the dairy herd manager, trained staff, or a veterinarian. Expression and differential expression was assessed by using the Affymetrix Bovine Genome Array (GPL2112). Control animals (2-4 years old, 1st to 3th lactation, one animal 4th and one 8th lactation) showed no clinical signs of disease and had no abnormalities in the udder or milk. Their somatic cell count (SCC) was less than 100,000 cells/ml milk. Most of the control samples were taken during early lactation (10-100 days post-partum, dpp). Diseased cows were in their 1st to 8th lactation within 10-220 dpp.
Project description:The liver of dairy cows naturally displays a series of metabolic adaptation during the periparturient period in response to the increasing nutrient requirement of lactation. The hepatic adaptation is partly regulated by insulin resistance and it is affected by the prepartal energy intake level of cows. We aimed to investigate the metabolic changes in the liver of dairy cows during the periparturient at gene expression level and to study the effect of prepartal energy level on the metabolic adaptation at gene expression level.B13:N13
Project description:In this study, samples of 16 dairy cows from a MAP infected farm were used. Serum, milk and fecal samples were collected. Categorizing these cows into two groups based on their MAP infection status different standard methods for detection MAP were applied. Healthy controls showed no positive results in enzyme-linked immunosorbent assay (ELISA) with serum and milk samples (cattletype MAP Ab, Qiagen, Hilden, Germany; In-direct, IDVet, Grabels, France) and after cultivation of fecal samples on commercial Her-rold´s Egg Yolk Agars (HEYM agar, Becton Dickinson, Heidelberg, Germany) for 12 weeks. Cows with positive results were grouped into MAP infected cows. Specifically, for mass spectrometry analysis serum of seven MAP infected cows and seven healthy controls were used. All animals were from the same farm and were kept under the same environmental conditions. For additional mass spectrometry analysis with a further control group sam-ples of 21 dairy cows from an uninfected farm were examined. All cattle from this farm showed negative results in ELISA with serum and milk samples. Additionally, there was never a positive result in regularly tested fecal samples and sock swab samples of this farm. For verification of differential CTSS expression in Western blot analysis five dairy cows from another infected farm were consultedincluded. MAP status of these cows was analyzed by cultivation of fecal samples on HEYM agar for 12 weeks and ELISA with se-rum samples. In detail, two cattle were categorized into healthy controls and three cattle into MAP infected cows. Withdrawal of bovine venous whole blood and experi-mental protocols were approved by the local authority, Government of Upper Bavaria, permit no. ROB-55.2-2532.Vet_03-17-106.
Project description:The experiment is part of a study aimed at identifying and studying genes that contribute to differences in oestrous behaviour expression and fertility levels of dairy cows. Samples from 4 brain areas (dorsal hypothalamus, ventral hypothalamus, amygdala and hippocampus) and the anterior pituitary were collected from 28 primiparous Holstein Friesian cows, 14 of which were sacrificed at start of oestrus and 14 at mid of oestrous cycle. Differential gene expression between the 2 phases of oestrous cycle as well as the association of gene expression patterns with the level of oestrous behaviour expression are studied.
Project description:Liver plays a profound role in the acute phase response (APR) observed in the early phase of acute bovine mastitis caused by Escherichia coli (E. coli). To gain an insight into the genes and pathways involved in hepatic APR of dairy cows we performed a global gene expression analysis of liver tissue sampled at different time points before and after intra-mammary (IM) exposure to E. coli lipopolysaccharide (LPS) treatment. Experiment Overall Design: Eight healthy, high yielding Holstein-Friesian dairy cows in their first lactation (9 to 12 weeks after calving) were chosen for this study. At time 0 the right front quarter was infused with 200 μg E. coli LPS dissolved in 10 ml 0.9% NaCl solution, the left front quarter serving as control was infused with 10 ml 0.9% NaCl solution. Liver biopsies were taken at â22, 3, 6, 9, 12 and 48 hours relative to LPS infusion in 4 cows, and also at â22, 9 and 48 hours in the remaining 4 cows. RNA from liver biopsies was isolated and biotin labeled cRNA was loaded onto the Affymetric GeneChip Bovine Genome Array. A control study using cows infused with 0.9% NaCl showed that there was no effect of taking the biopsy, neither in the clinical measurement nor in the expression of a selected subset of genes. Therefore, only samples taken from the LPS treated cows were measured for the gene expression using microarrays.