Project description:Comparison of wild type mouse cancer cell lines to transfected cell lines with IKKA, IKKB, Kras sh RNA and treated with Il-1b mouse protein
Project description:Recent studies have shown that circular RNAs (circRNAs) are abundant, widely expressed in mammals, and can display cell-type specific expression. However, how production of circRNAs is regulated and their precise biological function remains largely unknown. To study how circRNAs might be regulated during colorectal cancer progression, we used three isogenic colon cancer cell lines that differ only in KRAS mutation status. Cellular RNAs from the parental DLD-1 cells that contain both wild-type and G13D mutant KRAS alleles and isogenically-matched derivative cell lines, DKO-1 (mutant KRAS allele only) and DKs-8 (wild-type KRAS allele only) were analyzed using RNA-Seq. We developed a bioinformatics pipeline to identify and evaluate circRNA candidates from RNA-Seq data. Hundreds of high-quality circRNA candidates were identified in each cell line. Remarkably, circRNAs were significantly down-regulated at a global level in DLD-1 and DKO-1 cells compared to DKs-8 cells, indicating a widespread effect of mutant KRAS on circRNA abundance. This finding was confirmed in two independent colon cancer cell lines HCT116 (KRAS mutant) and HKe3 (KRAS WT). In all three cell lines, circRNAs were also found in secreted extracellular-vesicles, and circRNAs were more abundant in exosomes than cells. Our results suggest that circRNAs may serve as promising cancer biomarkers.
Project description:Activating mutants of RAS are commonly found in many human cancers, but to date selective targeting of RAS in the clinic has been limited to KRAS(G12C) through covalent inhibitors. Here, we have developed a monobody, termed 12VC1, that recognizes the active state of both KRAS(G12V) and KRAS(G12C) up to 400-times more tightly than wild-type KRAS. Affinity purification were performed on PATU8902 and H358 cell lines that contain KRAS(G12V) and KRAS(G12C), respectively, but not from growth factor stimulated HEK293T cells containing only wild-type RAS. The mass spectrometric data was acquired in data dependent mode to show the clear enrichment of KRAS in the 2 cell lines that carry the mutated RAS. In addition, a targeted analysis was performed for the peptide carrying the G12V mutation as well as the wild type KRAS peptide to further verify enrichment of only the KRAS mutant.
Project description:Colorectal cancer (CRC) tumors start as precancerous polyps on the inner lining of the colon or rectum, where they are exposed to the mechanics of colonic peristalsis. Our previous work leveraged a custom-built peristalsis bioreactor to demonstrate that colonic peristalsis led to cancer stem cell enrichment in colorectal cancer cells. However, this malignant mechanotransductive response was confined to select CRC lines that harbored an oncogenic mutation in the KRAS gene. In this work, therefore, we explored the involvement of activating KRAS mutations on peristalsis-associated mechanotransduction in CRC. Peristalsis enriched the cancer stem cell marker LGR5 in KRAS mutant (G13D, etc.) lines, in a Wnt-independent manner. Conversely, LGR5 enrichment in wild type KRAS lines exposed to peristalsis were minimal. LGR5 enrichment downstream of peristalsis translated to increased tumorigenicity in vivo in KRAS mutant vs. wild type lines. Differences in mechanotransduction response was additionally apparent via unbiased gene set enrichment analysis, where many unique pathways were enriched in wild type vs. mutant lines, in response to peristalsis. Interestingly, peristalsis also triggered β-catenin nuclear localization independent of Wnt, particularly in KRAS mutant lines. The central involvement of KRAS in the mechanotransductive responses was validated via gain and loss of function strategies. β-catenin activation and LGR5 enrichment downstream of peristalsis converged to the activation of the MEK/ERK kinase cascade, that remains active in cells that harbor oncogenic KRAS mutations. Taken together, our results demonstrated that oncogenic KRAS mutations conferred a unique peristalsis-associated mechanotransduction response to colorectal cancer cells, resulting in cancer stem cell enrichment and increased tumorigenicity. These mechanosensory connections can be leveraged in improving the sensitivity of emerging therapies that target oncogenic KRAS.
Project description:Mutant KRAS (mut-KRAS) is present in 30% of all human cancers and plays a critical role in cancer cell growth and resistance to therapy. There is evidence from colon cancer that mut-KRAS is a poor prognostic factor and negative predictor of patient response to molecularly targeted therapy. However, evidence for such a relationship in non small cell lung cancer (NSCLC) is conflicting. KRAS mutations are primarily found at codons 12 and 13, where different base changes lead to alternate amino acid substitutions that lock the protein in an active state. The patterns of mut-KRas amino acid substitutions in colon cancer and NSCLC are quite different, with aspartate (D) predominating in colon cancer (50%) and cysteine (C) in NSCLC (47%). Through an analysis of a recently completed biopsy biomarker-driven, molecularly targeted multi-arm trial of 215 evaluable patients with refractory NSCLC we show that mut-KRas-G12C/V but not total mut-KRAS predicts progression free survival for the overall group, and for the sorafenib and vandetanib treatment arms. Transcriptome microarray data shows differential expression of cell cycle genes between mut-KRas-G12C/V and G12D patient tumors. A panel of NSCLC cell lines with known mut-KRas amino acid substitutions was used to identify pathways activated by the different mut-KRas, showing that mut-KRas-G12D activates both PI-3-K and MEK signaling, while mut-KRas G12C does not, and alternatively activates RAL signaling. This finding was confirmed using immortalized human bronchial epithelial cells stably transfected with wt-KRAS and different forms of mut-KRAS. Molecular modeling studies show that the different conformation imposed by mut-KRas-G12C could lead to altered association with downstream signaling transducers compared to wild type and mut-KRas-G12D. The significance of the findings for developing mut-KRAS therapies is profound, since it suggests that not all mut-KRas amino acid substitutions signal to effectors in a similar way, and may require different therapeutic interventions.
Project description:Mutant KRAS (mut-KRAS) is present in 30% of all human cancers and plays a critical role in cancer cell growth and resistance to therapy. There is evidence from colon cancer that mut-KRAS is a poor prognostic factor and negative predictor of patient response to molecularly targeted therapy. However, evidence for such a relationship in non small cell lung cancer (NSCLC) is conflicting. KRAS mutations are primarily found at codons 12 and 13, where different base changes lead to alternate amino acid substitutions that lock the protein in an active state. The patterns of mut-KRas amino acid substitutions in colon cancer and NSCLC are quite different, with aspartate (D) predominating in colon cancer (50%) and cysteine (C) in NSCLC (47%). Through an analysis of a recently completed biopsy biomarker-driven, molecularly targeted multi-arm trial of 215 evaluable patients with refractory NSCLC we show that mut-KRas-G12C/V but not total mut-KRAS predicts progression free survival for the overall group, and for the sorafenib and vandetanib treatment arms. Transcriptome microarray data shows differential expression of cell cycle genes between mut-KRas-G12C/V and G12D patient tumors. A panel of NSCLC cell lines with known mut-KRas amino acid substitutions was used to identify pathways activated by the different mut-KRas, showing that mut-KRas-G12D activates both PI-3-K and MEK signaling, while mut-KRas G12C does not, and alternatively activates RAL signaling. This finding was confirmed using immortalized human bronchial epithelial cells stably transfected with wt-KRAS and different forms of mut-KRAS. Molecular modeling studies show that the different conformation imposed by mut-KRas-G12C could lead to altered association with downstream signaling transducers compared to wild type and mut-KRas-G12D. The significance of the findings for developing mut-KRAS therapies is profound, since it suggests that not all mut-KRas amino acid substitutions signal to effectors in a similar way, and may require different therapeutic interventions. Gene expression profiles were measured in 22 core biopsies from patients with refractory non-small cell lung cancer included in the Biomarker-integrated Approaches of Targeted Therapy for Lung Cancer Elimination (BATTLE). All tumors were KRAS mutants, but with different patterns of amino acid substitutions. Supervised analysis of transcriptome profiling was performed to compare cysteine or valine KRAS mutants with other KRAS mutants.
Project description:MicroRNA profiling in colon cancer cell lines. Two cell lines have been found with impairment on the export of precursor miRNAs into the cytoplasm (XPO5), HCT15 and DLD1. To test the microRNAs involved several comparisons have been performed: DLD1 and HCT15 cell lines have been compared with XPO5 wild-type cell lines (HCT116 and RKO). Furthermore the transfected XPO5 wild-type defective cells (DLD1.XPO5 wt and HCT15.XPO5 wt) have been compared respect to the non-transfected cells (HCT15 and DLD1). Finally the cell lines HCT15 and DLD1 transfected with a negative control (HCT15.XPO5 358-366 and DLD1.XPO5 358-366) have been compared with respect to non-transfected cell lines (HCT15 and DLD1).