Project description:Differences in vaginal microbiota, host transcriptome and proteins in women with bacterial vaginosis are associated with metronidazole treatment response
Project description:IgA coating of vaginal bacteria is reduced in the setting of bacterial vaginosis (BV) and preferentially targets BV-associated bacteria
Project description:The aim of the study was to investigate gene expression profiles of post-menopausal women receiving Premarin estrogen replacement therapy (ERT), compared to controls and to examine any correlations between the bacterial vaginosis (BV) status of the stubjects. This is the first study to use gene arrays to correlate changes in host expression to ERT and BV.
Project description:Bacterial vaginosis (BV) treatment failures or recurrences are common. To identify features associated with treatment response, we compared vaginal microbiota and host ectocervical transcriptome before and after oral metronidazole therapy. Response to metronidazole is characterized by significant changes in chemokines and related transcripts suggesting that strategies to promote these pathways may prove beneficial.
Project description:Bacterial vaginosis (BV), a common syndrome characterized by Lactobacillus-deficient vaginal microbiota, is associated with adverse health outcomes. BV often recurs after standard antibiotic therapy in part because antibiotics promote microbiota dominance by Lactobacillus iners instead of Lactobacillus crispatus, which has more beneficial health associations. Strategies to promote L. crispatus and inhibit L. iners are thus needed. We show that oleic acid (OA) and similar long-chain fatty acids simultaneously inhibit L. iners and enhance L. crispatus growth. These phenotypes require OA-inducible genes conserved in L. crispatus and related lactobacilli, including an oleate hydratase (ohyA) and putative fatty acid efflux pump (farE). FarE mediates OA resistance, while OhyA is robustly active in the vaginal microbiota and enhances bacterial fitness by biochemically sequestering OA in a derivative form only ohyA-harboring organisms can exploit. OA promotes L. crispatus dominance more effectively than antibiotics in an in vitro BV model, suggesting a metabolite-based treatment approach.