Project description:This study aimed to identify differential expressed genes before and after tranfection with miR-107, miR-198 and miR-214, using the KYSE450 esophagus cancer cell line as a model.
Project description:The expression of miR-214 is up-regulated in the liver of chronic viral hepatitis. Functional relevance of miR-214 was analyzed in human stellate cell line, Lx-2. Pro fibrotic genes were repressed, while translation related genes were up-regulated by LNA-antimiR-214
Project description:Abstract: Background & Aims: Unusual hypervascularity is a hallmark of human hepatocellular carcinoma (HCC). Although microRNA-214 (miR-214) is upregulated in other human cancers, it is downregulated in HCC. We elucidated the biological and clinical significance of miR-214 downregulation in HCC. Methods: MicroRNAs deregulated in HCC were identified using array-based MicroRNA profiling. A luciferase reporter assay confirmed target association between miR-214 and hepatoma-derived growth factor (HDGF). Tube formation and in vivo angiogenesis assays validated the roles of miR-214/HDGF in angiogenesis. Results: MiR-214 downregulation was associated with higher tumor recurrence and worse clinical outcomes. Ectopic expression of miR-214 suppressed xenograft tumor growth and microvascularity of the tumor and its surrounding tissues. The genes downregulated by ectopic expression of miR-214 were involved in the regulation of apoptosis, cell cycle, and angiogenesis. Integrated analysis disclosed HDGF as a downstream target of miR-214. Conditioned medium of HCC cells contained bioactivity to stimulate tube formation of human umbilical vein endothelial cells, which was abolished by pretreatment of the conditioned media with HDGF antibodies, silencing of HDGF expression or ectopic expression of miR-214 in the donor HCC cells. The angiogenic activity of the conditioned media lost by ectopic expression of miR-214 in the donor cells was restored by supplementation with recombinant HDGF. In vivo tumor angiogenesis assays showed significant suppression of tumor vascularity by ectopic expression of miR-214. Conclusions: A novel role of microRNA in tumrigenesis is identified. Downregulation of miR-214 contributes to unusual hypervascularity of HCC via activation of the HDGF paracrine pathway for tumor angiogenesis. To identify miRNAs that are deregulated in human HCC, 68 HCC and 21 non-tumor liver tissues were subjected to profiling of miRNA expression using miRNA arrays containing 739 human miRNA probes. Differentially expressed microRNAs were identified.
Project description:MicroRNAs have been demonstrated to be deregulated in multiple myeloma (MM). We have previously reported the downregulation of miR-214 in MM compared to normal plasma cells. In the present study, we have explored the functional role of miR-214 in myeloma pathogenesis. Ectopic expression of miR-214 reduced cell growth and induced apoptosis of myeloma cells. In order to identify the potential direct target genes of miR-214 which could be involved in the biological pathways regulated by this miRNA, gene expression profiling of H929 myeloma cell line transfected with precursor miR-214 was carried out. Functional analysis revealed significant enrichment for DNA replication, cell cycle phase and DNA binding. We show that miR-214 directly down-regulates the expression of PSMD10, which encodes the oncoprotein gankyrin, and ASF1B, a histone chaperone required for DNA replication, by binding to their 3'-UTR. In addition, gankyrin inhibition induced an increase of P53 mRNA levels and subsequent up-regulation in CDKN1A (p21Waf1/Cip1) and BAX transcripts, which are direct transcriptional targets of p53. In conclusion, we demonstrate that miR-214 function as a tumor suppressor in myeloma by a positive regulation of p53 and inhibition of DNA replication. H929 cell line was transfected with Pre-miR™ miRNA precursors pre-miR-214 or pre-miR™ miRNA negative, non-targeting control#1 (Ambion) at 50 nM concentration, using the nucleofector II system with C-16 program (Amaxa). The experiments were performed in triplicates.
Project description:Purpose: Determine the differential gene expression pattern between wildtype, Pkd2-KO and Pkd2-miR-214 KO mice Methods: kidney mRNA profiles of Pkd2-KO and Pkd2-mir-214-KO mice was sequenced with N of 3 in each group Results: 972 differentially expressed transcripts were identified between Pkd2-KO kidneys and Pkd2-miR-214-KO kidneys Conclusion: Deletion of miR-214 promotes interstitial inflammation in mouse models of ADPKD
Project description:MicroRNAs have been demonstrated to be deregulated in multiple myeloma (MM). We have previously reported the downregulation of miR-214 in MM compared to normal plasma cells. In the present study, we have explored the functional role of miR-214 in myeloma pathogenesis. Ectopic expression of miR-214 reduced cell growth and induced apoptosis of myeloma cells. In order to identify the potential direct target genes of miR-214 which could be involved in the biological pathways regulated by this miRNA, gene expression profiling of H929 myeloma cell line transfected with precursor miR-214 was carried out. Functional analysis revealed significant enrichment for DNA replication, cell cycle phase and DNA binding. We show that miR-214 directly down-regulates the expression of PSMD10, which encodes the oncoprotein gankyrin, and ASF1B, a histone chaperone required for DNA replication, by binding to their 3'-UTR. In addition, gankyrin inhibition induced an increase of P53 mRNA levels and subsequent up-regulation in CDKN1A (p21Waf1/Cip1) and BAX transcripts, which are direct transcriptional targets of p53. In conclusion, we demonstrate that miR-214 function as a tumor suppressor in myeloma by a positive regulation of p53 and inhibition of DNA replication.
Project description:This study identifies miR-198 as a potential inhibitor of keratinocyte migration in skin This study identifies genes differentially expressed during the early phases of wound healing using an ex vivo organ culture model of human skin Total RNA from N/TERT-1 keratinocytes transfected with a negative control miRNA or miR-198 were subjected to microarray analysis Skin from elective plastic surgery were subjected to wounding using ex vivo organ culture model. Total RNA from skin biopsies were isolated at 0hr and 24hr post injury and subjected to mircoarray analysis
Project description:This study identifies miR-198 as a potential inhibitor of keratinocyte migration in skin This study identifies genes differentially expressed during the early phases of wound healing using an ex vivo organ culture model of human skin