Project description:Background: Safe and sensitive methods for glioblastoma diagnosis and disease monitoring are urgently needed. Exosomes are nano-sized extracellular vesicles that contain molecules characteristic of their cell-of-origin, including microRNA. Exosomes released by glioblastoma tumors cross the blood-brain-barrier ino the peripheral circulation. Methods: Serum exosomal-microRNA isolated from IDH-wildtype glioblastoma (n=12) and IDH-mutant glioma grades II-III (n=10) were analyzed using small-RNA next generation sequencing and compared to age- and gender-matched healthy controls. Differentially expressed miRNAs (|fold change|³2 and p-value ≤ 0.05 in three statistical tests, Fischer-exact, t-test, and Wilcoxon) were identified and the predictive power of individual and subsets of miRNAs were tested using univariate (logistic regression) and multivariate (Random Forest) analyses. Additional glioblastoma sera (n=4) and independent sets of healthy (n=9) and non-glioma (n=10) controls were used to further test the predictive power of our glioblastoma miRNA signature. Results: Twenty-six miRNAs were differentially expressed in glioblastoma relative to healthy controls. Seven miRNAs (miR-182-5p, miR-328-3p, miR-339-5p, miR-340-5p, miR-485-3p, miR-486-5p and miR-543) were the most stable for classifying glioblastoma, achieving a predictive power of 91.7%. Strikingly, the combined expressions of miR-182-5p, miR-328-3p miR-485-3p miR-486-5p distinguished glioblastoma patients from controls with perfect accuracy. This miRNA panel was able to correctly classify all specimens in validation cohorts (n=23). An analogous approach was used to identify 23 dysregulated miRNAs in IDH-mutant gliomas, including a distinct subset of stable miRNAs for classifying patients with lower-grade IDH-mutant gliomas. Conclusions: Our serum exosomal-miRNA signature can accurately diagnose glioblastoma preoperatively. These findings have significant scope to revolutionize glioblastoma tumor diagnosis and disease monitoring. IMPORTANCE OF STUDY: There is a real need for accurate biomarkers that can measure glioblastoma disease activity and treatment response in a safe and timely manner. This study demonstrates that exosome-associated microRNAs have exceptional utility as blood-based biomarkers in glioma patients. This work also shows the potential for exosomal microRNA profiles to be used for glioma subtyping, grading and determining mutational states. The development of specific, sensitive and non-invasive screening tests would have significant clinical benefit by reducing costs of treatment monitoring, improving accessibility and quality-of-life measures. Moreover, such tests have the potential to provide objectively measured surrogate endpoints to allow clinical trial protocols to be more dynamic and adaptive.
Project description:Background: Newer 3D culturing approaches are a promising way to better mimic the in vivo tumor microenvironment and to study the interactions between the heterogeneous cell populations of glioblastoma multiforme. Like many other tumors, glioblastoma uses extracellular vesicles as an intercellular communication system to prepare surrounding tissue for invasive tumor growth. However, little is known about the effects of 3D culture on extracellular vesicles. The aim of this study was to comprehensively characterise extracellular vesicles in 3D organoid models and compare them to conventional 2D cell culture systems.Methods: Primary glioblastoma cells were cultured as 2D and 3D organoid models. Extracellular vesicles were obtained by precipitation and immunoaffinity, with the latter allowing targeted isolation of the CD9/CD63/CD81 vesicle subpopulation. Comprehensive vesicle characterisation was performed and miRNA expression profiles were generated by smallRNA-sequencing. In silico analysis of differentially regulated miRNAs was performed to identify mRNA targets and corresponding signaling pathways. The tumor cell media and extracellular vesicle proteome were analysed by high-resolution mass spectrometry.Results: We observed an increased concentration of extracellular vesicles in 3D organoid cultures. Differential gene expression analysis further revealed the regulation of twelve miRNAs in 3D tumor organoid cultures (with nine miRNAs down and three miRNAs upregulated). MiR-23a-3p, known to be involved in glioblastoma invasion, was significantly increased in 3D. MiR-7-5p, which counteracts glioblastoma malignancy, was significantly decreased. Moreover, we identified four miRNAs (miR- 323a-3p, miR-382-5p, miR-370-3p, miR-134-5p) located within the DLK1-DIO3 domain, a cancer associated genomic region, suggesting a possible importance of this region in glioblastoma progression. Overrepresentation analysis identified alterations of extracellular vesicle cargo in 3D organoids, including representation of several miRNA targets and proteins primarily implicated in the immune response.Conclusion: Our results show that 3D glioblastoma organoid models secrete extracellular vesicles with an altered cargo compared to corresponding conventional 2D cultures. Extracellular vesicles from 3D cultures were found to contain signaling molecules associated with the immune regulatory signaling pathways and as such could potentially change the surrounding microenvironment towards tumor progression and immunosuppressive conditions. These findings suggest the use of 3D glioblastoma models for further clinical biomarker studies as well as investigation of new therapeutic options.
Project description:Glioblastoma Multiforme (GBM) is an aggressive form of brain tumor, associated with poor prognosis and low survival rates, and early diagnosis is impaired by the lack of presymptomatic biomarkers. Here we used a syngenic GBM mouse model to investigate longitudinal changes in the proteome profile of serum, serum small extracellular vesicles (sEVs) and cerebrospinal fluid (CSF) during GBM progression. Motor tests were used to define a baseline, a presymptomatic and an advanced stage of tumor progression and body fluids were sampled at these time points.
Project description:This model is based on paper:
Strategies in regulating glioblastoma signaling pathways and anti-invasion therapy
Abstract:
Glioblastoma multiforme is one of the most invasive type of glial tumors, which rapidly grows and commonly spreads into nearby brain tissue. It is a devastating brain cancer that often results in death within approximately 12 to 15 months after diagnosis. In this work, optimal control theory was applied to regulate intracellular signaling pathways of miR-451–AMPK–mTOR–cell cycle dynamics via glucose and drug intravenous administration infusions. Glucose level is controlled to activate miR-451 in the up-stream pathway of the model. A potential drug blocking the inhibitory pathway of mTOR by AMPK complex is incorporated to explore regulation of the down-stream pathway to the cell cycle. Both miR-451 and mTOR levels are up-regulated inducing cell proliferation and reducing invasion in the neighboring tissues. Concomitant and alternating glucose and drug infusions are explored under various circumstances to predict best clinical outcomes with least administration costs.
Project description:This model is based on paper, based on its cell cycle dynamics model:
Strategies in regulating glioblastoma signaling pathways and anti-invasion therapy
Abstract:
Glioblastoma multiforme is one of the most invasive type of glial tumors, which rapidly grows and commonly spreads into nearby brain tissue. It is a devastating brain cancer that often results in death within approximately 12 to 15 months after diagnosis. In this work, optimal control theory was applied to regulate intracellular signaling pathways of miR-451–AMPK–mTOR–cell cycle dynamics via glucose and drug intravenous administration infusions. Glucose level is controlled to activate miR-451 in the up-stream pathway of the model. A potential drug blocking the inhibitory pathway of mTOR by AMPK complex is incorporated to explore regulation of the down-stream pathway to the cell cycle. Both miR-451 and mTOR levels are up-regulated inducing cell proliferation and reducing invasion in the neighboring tissues. Concomitant and alternating glucose and drug infusions are explored under various circumstances to predict best clinical outcomes with least administration costs.
Project description:Background: Patients with glioblastoma (GBM) have a dramatically poor prognosis. The recent REGOMA trial suggested an overall survival benefit of regorafenib in recurrent GBM patients. Considering the extreme genetic heterogeneity of GBMs, we aimed to identify molecular biomarkers predictive of differential response to the drug. The study provides evidence that a signature based on the expression of five biomarkers could help identifying a subgroup of GBM patients exhibiting a striking survival advantage when treated with regorafenib. Despite the presented results must be confirmed in larger replication cohorts, the study highlights potential biomarker options to help guiding the clinical decision among regorafenib and other treatments in patients with relapsing GBM. Methods.Total RNA was extracted from tumor samples of patients enrolled in the REGOMA trial. Genome-wide transcriptome and miRNA profiles were associated with patients' Overall Survival (OS) and Progression Free Survival (PFS). Results. At first step, a set of 11 gene transcripts (HIF1A, CTSK, SLC2A1, KLHL12, CDKN1A, CA12, WDR1, CD53, CBR4, NIFK-AS1, RAB30-DT) and 10 miRNAs (miR-93-5p, miR-203a-3p, miR-17-5p, let-7c-3p, miR-101-3p, miR-3607-3p, miR-6516-3p, miR-301a-3p, miR-23b-3p, miR-222-3p) was filtered by comparing survival between regorafenib and lomustine arms. As second step, a minisignature of two gene transcripts (HIF1A, CDKN1A) and three miRNAs (miR-3607-3p, miR-301a-3p, miR-93-5p) identified a subgroup of patients showing prolonged survival after regorafenib administration (median OS range 10.6 - 20.8 months). Conclusions. The study provides evidence that a signature based on the expression of five biomarkers could help identifying a subgroup of GBM patients exhibiting a striking survival advantage when treated with regorafenib. Despite the presented results must be confirmed in larger replication cohorts, the study highlights potential biomarker options to help guiding the clinical decision among regorafenib and other treatments in patients with relapsing GBM.
Project description:Background: Patients with glioblastoma (GBM) have a dramatically poor prognosis. The recent REGOMA trial suggested an overall survival benefit of regorafenib in recurrent GBM patients. Considering the extreme genetic heterogeneity of GBMs, we aimed to identify molecular biomarkers predictive of differential response to the drug. The study provides evidence that a signature based on the expression of five biomarkers could help identifying a subgroup of GBM patients exhibiting a striking survival advantage when treated with regorafenib. Despite the presented results must be confirmed in larger replication cohorts, the study highlights potential biomarker options to help guiding the clinical decision among regorafenib and other treatments in patients with relapsing GBM. Methods.Total RNA was extracted from tumor samples of patients enrolled in the REGOMA trial. Genome-wide transcriptome and miRNA profiles were associated with patients' Overall Survival (OS) and Progression Free Survival (PFS). Results. At first step, a set of 11 gene transcripts (HIF1A, CTSK, SLC2A1, KLHL12, CDKN1A, CA12, WDR1, CD53, CBR4, NIFK-AS1, RAB30-DT) and 10 miRNAs (miR-93-5p, miR-203a-3p, miR-17-5p, let-7c-3p, miR-101-3p, miR-3607-3p, miR-6516-3p, miR-301a-3p, miR-23b-3p, miR-222-3p) was filtered by comparing survival between regorafenib and lomustine arms. As second step, a minisignature of two gene transcripts (HIF1A, CDKN1A) and three miRNAs (miR-3607-3p, miR-301a-3p, miR-93-5p) identified a subgroup of patients showing prolonged survival after regorafenib administration (median OS range 10.6 - 20.8 months). Conclusions. The study provides evidence that a signature based on the expression of five biomarkers could help identifying a subgroup of GBM patients exhibiting a striking survival advantage when treated with regorafenib. Despite the presented results must be confirmed in larger replication cohorts, the study highlights potential biomarker options to help guiding the clinical decision among regorafenib and other treatments in patients with relapsing GBM.
Project description:Oxaliplatin (oxPt) resistance in colorectal cancers (CRC) is a major unsolved problem. Consequently, predictive markers and a better understanding of resistance mechanisms are urgently needed. To investigate if the recently identified predictive miR-625-3p is functionally involved in oxPt resistance, stable and inducible models of miR-625-3p dysregulation were analyzed. Ectopic expression of miR-625-3p in CRC cells led to increased resistance towards oxPt. The mitogen-activated protein kinase (MAPK) kinase 6 (MAP2K6/MKK6) – an activator of p38 MAPK - was identified as a functional target of miR-625-3p, and, in agreement, was down-regulated in patients not responding to oxPt therapy. The miR-625-3p resistance phenotype could be reversed by anti-miR-625-3p treatment and by ectopic expression of a miR-625-3p insensitive MAP2K6 variant. Transcriptome, proteome and phosphoproteome profiles revealed inactivation of MAP2K6-p38 signaling as a possible driving force behind oxPt resistance. We conclude that miR-625-3p induces oxPt resistance by abrogating MAP2K6-p38 regulated apoptosis and cell cycle control networks.
Project description:Glioblastoma multiforme (GBM) is the most aggressive form of brain tumors. Despite radical surgery and radiotherapy supported by chemotherapy, the disease still remains incurable with extremely low median survival rate of 12-15 months from the time of initial diagnosis. The main cause of treatment failure is considered to be the presence of cells that are resistant to such treatment. MicroRNAs (miRNAs) as regulators of gene expression are involved in the tumor pathogenesis, including GBM. MiR-338 is a brain specific miRNA which has been described to target pathways involved in proliferation and differentiation. In our study, miR-338-3p and -5p were differentially expressed in GBM tissue in comparison to non-tumor brain tissue. Overexpression of miR-338-3p with miRNA mimic did not show any changes in proliferation rates in GBM cell lines (A172, T98G, U87MG). On the other hand, pre-miR-338-5p notably decreased proliferation and caused cell cycle arrest. Since radiation is currently the main treatment modality in GBM, we combined overexpression of pre-miR-338-5p with radiation, which led to significantly decreased of cell proliferation, and increased cell cycle arrest and apoptosis in comparison to only irradiated cells. To better elucidate the mechanism of action, we performed gene expression profiling analysis that revealed targets of miR-338-5p being Ndfip1, Rheb, ppp2R5a. These genes have been described to be involved in DNA damage response, proliferation and cell cycle regulation. To our knowledge, this is the first study to describe role of miR-338-5p in GBM and its potential to improve sensitivity of GBM to radiation. Study was performed on three glioblastoma multiforme cell lines A172, T98G and U87MG. This experiment was performed on Affymetrix GeneChip Human Gene ST 1.0 to elucidate the targets of miRNA-338-5p. Cell lines were seeded 24 hours prior transfection. After transfection with pre-miR338-5p or negative control cell were cultured for 24 hours and harvested. RNA was isolated using MirVana miRNA Isolation Kit (Ambion, USA) and checked for RNA integrity by Bioanalyzer 2100 and purity by ratios 260/280>1.8 and 260/230>1.8 by Nanodrop2000.
Project description:Overexpression of miR-127-3p in LN229 glioblastoma cells promotes their migration and invasion in vitro and in vivo in xenograft models. We used microarrays to detail the global programme of gene expression in miR-127-3p overexpression LN229 cells compared with mock overexpression LN229 cells MiR-127-3p overexpression LN229 cells and and mock overexpression LN229 cells were cultured in DMEM cell culture media for RNA extraction and hybridization on Affymetrix microarrays. We sought to obtain the genes regulated by miR-127-3p in glioblastoma cell lines.