Project description:Temporal lobe epilepsy (TLE) is the most common intractable form of epilepsy in adults and status epilepticus (SE) is the most severe form of seizure that can be non-convulsive and is then difficult to diagnose. Diagnosis of both conditions is principally based on clinical examination and history, often depending on EEG and imaging. A molecular biomarker of these two conditions would be transformational in supporting both diagnoses.Cerebrospinal fluid offers an alternative source of microRNA biomarkers with the advantage of being in closer contact with the target tissue and sites of pathology. The present study indicates cerebrospinal fluid may contain microRNA biomarkers of TLE and SE and offers insights into trafficking mechanisms of biofluid microRNAs that may further enhance diagnostic value.
Project description:The epilepsies represent one of the most common neurological disorders. Mesial temporal lobe epilepsies (MTLE) are the most frequent form of partial epilepsies and display frequent resistance to anti-epileptic drugs thus representing a major health care problem. In TLE, the origin of seizure activity typically involves the hippocampal formation, which displays major neuropathological features, described with the term hippocampal sclerosis (HS). HS is the most frequent pathological substrate of refractory mesial temporal lobe epilepsy. Complex partial seizures (CPS) are the predominant seizure type associated with medial temporal lobe epilepsy. MTLE is commonly due to mesial temporal sclerosis (MTS). The biology underlying the epilepstic seizures and the transcriptome associated to the seizure in intractable medial temporal lobe epilepsy is ill understood. The aim of the study was to identify potential biomarkers that could identify epileptic seizure. Thus we performed transcriptome profiling of ten medial temporal lobe epilepsy cases which are resistant to the drug and underwent temporal lobectomy. The cases constitutes of patients with intractable complex partial seizure, treated medically and have undergone detailed presurgical evaluation and subjected to surgery for standard temporal lobectomy and amygdalo-hippocampectomy. The spiking areas identified after the electrocorticography will form the test tissues, which compared with the nonspiking areas removed during the surgery, from the same patient. This could probably form one of the appropriate controls, as test and control are from same patient, which eliminates the genome variations that could incur due to the comparison with the tissues from the another patient. Also this could get rid of expression changes due to the treatments undergone by the patient. We performed two color microarray wherein we labled seizure focus (spiking area) with Cy5 and non-seizure region tissues (non-spiking) with Cy3. As a strategy to test the possibility of potential diagnostic biomarkers we are intended to test the differentially regulated molecules in an independent set of epilepsy samples. Two color experiment
Project description:The epilepsies represent one of the most common neurological disorders. Mesial temporal lobe epilepsies (MTLE) are the most frequent form of partial epilepsies and display frequent resistance to anti-epileptic drugs thus representing a major health care problem. In TLE, the origin of seizure activity typically involves the hippocampal formation, which displays major neuropathological features, described with the term hippocampal sclerosis (HS). HS is the most frequent pathological substrate of refractory mesial temporal lobe epilepsy. Complex partial seizures (CPS) are the predominant seizure type associated with medial temporal lobe epilepsy. MTLE is commonly due to mesial temporal sclerosis (MTS). The biology underlying the epilepstic seizures and the transcriptome associated to the seizure in intractable medial temporal lobe epilepsy is ill understood. The aim of the study was to identify potential biomarkers that could identify epileptic seizure. Thus we performed transcriptome profiling of ten medial temporal lobe epilepsy cases which are resistant to the drug and underwent temporal lobectomy. The cases constitutes of patients with intractable complex partial seizure, treated medically and have undergone detailed presurgical evaluation and subjected to surgery for standard temporal lobectomy and amygdalo-hippocampectomy. The spiking areas identified after the electrocorticography will form the test tissues, which compared with the nonspiking areas removed during the surgery, from the same patient. This could probably form one of the appropriate controls, as test and control are from same patient, which eliminates the genome variations that could incur due to the comparison with the tissues from the another patient. Also this could get rid of expression changes due to the treatments undergone by the patient. We performed two color microarray wherein we labled seizure focus (spiking area) with Cy5 and non-seizure region tissues (non-spiking) with Cy3. As a strategy to test the possibility of potential diagnostic biomarkers we are intended to test the differentially regulated molecules in an independent set of epilepsy samples.
Project description:At present, the treatment for moyamoya disease (MMD) primarily consists of combined direct and indirect bypass surgery. Nevertheless, more than half of indirect bypass surgeries fail to develop good collaterals from the dura and temporal muscle. This study aimed to investigate whether microRNAs (miRNAs) in cerebrospinal fluid (CSF) could serve as biomarkers for the prediction of postoperative collateral formation.
Project description:Epilepsy frequently develops as a result of brain insult, for example brain injury or stroke. Currently there are no tools allowing us to predict which trauma patients will eventually develop epilepsy. There is evidence that microRNAs levels are altered in the blood, making them attractive candidates for peripheral biomarkers of epilepsy. We analyzed miRNA levels in blood samples using Affymetrix microarrays 4.1 and performed comparative analysis of samples. We performed 3 comparisons: i) control animals vs. Status epilepticus animals, ii) animals which developed first spontaneous seizure around 7 days post stimulation (EARLY), or later after 21days post stimulation (LATE), iii) animals that had high or low number of seizures as determined by seizures number (EARLY vs. LATE).
Project description:Epilepsy frequently develops as a result of brain insult, for example brain injury or stroke. Currently there are no tools allowing us to predict which trauma patients will eventually develop epilepsy. There is evidence that microRNAs levels are altered in the blood, making them attractive candidates for peripheral biomarkers of epilepsy. We analyzed miRNA levels in blood samples using Affymetrix microarrays 4.1 and performed comparative analysis of samples. We performed 3 comparisons: i) control animals vs. Status epilepticus animals, ii) animals which developed first spontaneous seizure around 7 days post stimulation (EARLY), or later after 21days post stimulation (LATE), iii) animals that had high or low number of seizures as determined by seizures number (EARLY vs. LATE).
Project description:Epilepsy frequently develops as a result of brain insult, for example brain injury or stroke. Currently there are no tools allowing us to predict which trauma patients will eventually develop epilepsy. There is evidence that microRNAs levels are altered in plasma, making them attractive candidates for peripheral biomarkers of epilepsy. We analyzed miRNA levels in plasma samples using Affymetrix microarrays 4.1 and performed comparative analysis of samples. We performed 3 comparisons: i) control animals vs. Status epilepticus animals, ii) animals which developed first spontaneous seizure around 7 days post stimulation (EARLY), or later after 21days post stimulation (LATE), iii) animals that had developed seizures at given timepoint (EPI) and animals that did not experience seizures by given timepoint (NONEPI).
Project description:Epilepsy frequently develops as a result of brain insult, for example brain injury or stroke. Currently there are no tools allowing us to predict which trauma patients will eventually develop epilepsy. There is evidence that microRNAs levels are altered in the blood, making them attractive candidates for peripheral biomarkers of epilepsy. We analyzed miRNA levels in blood samples using Affymetrix microarrays 4.1 and performed comparative analysis of samples. We performed 3 comparisons: i) control animals vs. Status epilepticus animals, ii) animals which developed first spontaneous seizure around 7 days post stimulation (EARLY), or later after 21days post stimulation (LATE), iii) animals that had high or low number of seizures as determined by seizures number (EARLY vs. LATE).
Project description:Increased miR-135a levels are observed in human patients with temporal lobe Epilepsy (TLE) and in experimental animal models. Upon targeting the increased miR-135a levels in vivo using antagomirs in kainic acid induced status epilepticus mouse model of TLE, we observed a strong reduction of spontaneous recurrent seizures. To understand this further and to find target mRNAs that potentially mediate the seizure suppressive function of miR-135a, we performed immunoprecipitation using biotin tagged miRNA mimics, followed by RNAsequencing (RNAseq). We found several novel neuronal targets of miRNA-135a and identified Mef2a as a key target in this study. Here we report the total RNAseq data.
Project description:Mesial Temporal Lobe Epilepsy is characterized by progressive changes of both neurons and glia, also referred to as epileptogenesis. No curative treatment options, apart from surgery, are available. DNA methylation (DNAm) is a potential upstream mechanism in epileptogenesis and may serve as a novel therapeutic target. To our knowledge, this is the first study to investigate epilepsy-related DNAm, gene expression (GE) and their relationship, in neurons and glia. We used the intracortical kainic acid injection model to elicit status epilepticus. At 24 hours post injection, hippocampi from eight kainic acid- (KA) and eight saline-injected (SH) mice were extracted and shock frozen. Separation into neurons and glial nuclei was performed by flow cytometry. Changes in DNAm and gene expression were measured with reduced representation bisulfite sequencing (RRBS) and mRNA-sequencing (mRNAseq). Statistical analyses were performed in R with the edgeR package. We observed fulminant DNAm- and GE changes in both neurons and glia at 24 hours after initiation of status epilepticus. The vast majority of these changes were specific for either neurons or glia. At several epilepsy-related genes, like HDAC11, SPP1, GAL, DRD1 and SV2C, significant differential methylation and differential gene expression coincided. We found neuron- and glia-specific changes in DNAm and gene expression in early epileptogenesis. We detected single genetic loci in several epilepsy-related genes, where DNAm and GE changes coincide, worth further investigation. Further, our results may serve as an information source for neuronal and glial alterations in both DNAm and GE in early epileptogenesis.