Project description:Chemical investigation of cyanobacterial strain HT-58-2, which most closely aligns with the genus Brasilomena, has led to the isolation of two compounds related to tolypodiol. The structures and absolute configuration of 6-deoxytolypodiol (1) and 11-hydroxytolypodiol (2) were elucidated by spectroscopic and spectrometric analysis. While tolypodiol previously showed anti-inflammatory activity in a mouse ear edema assay, only 2 reduced in vitro thromboxane B2 and superoxide anion (O2-) generation from Escherichia coli lipopolysaccharide-activated rat neonatal microglia to any appreciable degree.
Project description:Cyanobacteria are known as rich repositories of natural products. One cyanobacterial-microbial consortium (isolate HT-58-2) is known to produce two fundamentally new classes of natural products: the tetrapyrrole pigments tolyporphins A-R, and the diterpenoid compounds tolypodiol, 6-deoxytolypodiol, and 11-hydroxytolypodiol. The genome (7.85 Mbp) of the Nostocales cyanobacterium HT-58-2 was annotated previously for tetrapyrrole biosynthesis genes, which led to the identification of a putative biosynthetic gene cluster (BGC) for tolyporphins. Here, bioinformatics tools have been employed to annotate the genome more broadly in an effort to identify pathways for the biosynthesis of tolypodiols as well as other natural products. A putative BGC (15 genes) for tolypodiols has been identified. Four BGCs have been identified for the biosynthesis of other natural products. Two BGCs related to nitrogen fixation may be relevant, given the association of nitrogen stress with production of tolyporphins. The results point to the rich biosynthetic capacity of the HT-58-2 cyanobacterium beyond the production of tolyporphins and tolypodiols.