Project description:Repair of DNA double-strand break (DSB) is critical for the maintenance of genome integrity. We have previously shown that a class of DSB-induced small RNAs (diRNAs) facilitates homologous recombination (HR)-mediated DSB repair in Arabidopsis thaliana. Here we show that INVOLVED IN DE NOVO 2 (IDN2), a double-stranded RNA (dsRNA) binding protein involved in small RNA-directed DNA methylation, is required for DSB repair in Arabidopsis. We find that IDN2 interacts with the heterotrimeric replication protein A (RPA) complex. Depletion of IDN2 or the diRNA-binding ARGONAUTE 2 (AGO2) leads to increased accumulation of RPA at DSB sites and mislocalization of the recombination factor RAD51. These findings support a model in which IDN2 interacts with RPA and facilitates the release of RPA from ssDNA tails and subsequent recruitment of RAD51 at DSB sites to promote DSB repair.
Project description:In the bacterium Escherichia coli, RecG directs DNA synthesis during the repair of DNA double-strand breaks by homologous recombination. Examination of RecA binding during double-strand break repair in Escherichia coli in the presence and absence of RecG protein
Project description:The Mre11-Rad50-Nbs1 (MRN) complex recognizes and processes DNA double-strand breaks for homologous recombination by performing short-range removal of 5ʹ strands. Endonucleolytic processing by MRN requires a stably bound protein at the break site—a role we postulate is played by DNA-dependent protein kinase (DNA-PK) in mammals. Here we interrogate sites of MRN-dependent processing by identifying sites of CtIP association and by sequencing DNA- PK-bound DNA fragments that are products of MRN cleavage. These intermediates are generated most efficiently when DNA-PK is catalytically blocked, yielding products within 200 bp of the break site, whereas DNA-PK products in the absence of kinase inhibition show greater dispersal. Use of light-activated Cas9 to induce breaks facilitates temporal resolution of DNA- PK and Mre11 binding, showing that both complexes bind to DNA ends before release of DNA- PK-bound products. These results support a sequential model of double-strand break repair involving collaborative interactions between homologous and non-homologous repair complexes.
Project description:HELB is a human helicase involved in initiation of DNA replication, the replication stress response, and regulation of double-strand DNA break repair. rs75770066 is a low-frequency single-nucleotide polymorphism (SNP) in the HELB gene that affects age at natural menopause. rs75770066 results in a D506G substitution in a HELB specific insertion in the 1A domain of the helicase that contains amino acids known to interact with RPA. We found that this amino acid change has no effect on the enzymatic activity of HELB but dramatically impairs the cellular function of HELB. D506G HELB exhibits impaired interaction with RPA, which likely results in the effects of rs75770066 as this reduces recruitment of HELB to sites of DNA damage. Reduced recruitment of D506G-HELB to double-strand DNA breaks and the concomitant increase in homologous recombination likely alters the levels of meiotic recombination, which affects the viability of gametes. Because menopause occurs when oocyte levels drop below a minimum threshold, altered repair of meiotic double-stranded DNA breaks has the potential to directly affect the age at natural menopause.
Project description:Homologous recombination (HR) is crucial for genetic exchange, accurate repair of DNA double-strand breaks and pivotal for genome integrity. HR uses homologous sequences for repair, but how homology search, the exploration of the genome for homologous DNA sequences, is conducted in the nucleus remains poorly understood. Here, we use time-resolved chromatin immunoprecipitations of repair proteins to monitor homology search in vivo. We found that homology search proceeds by a probing mechanism, which commences around the break and samples preferentially on the broken chromosome. However, elements thought to instruct chromosome loops mediate homology search shortcuts, and centromeres, which cluster within the nucleus, may facilitate homology search on other chromosomes. Our study thus revealed crucial parameters for homology search in vivo and emphasizes the importance of linear distance, chromosome architecture and proximity for recombination efficiency. 2 new custom ChIP-chip platforms used; both Nimblegen; differ in oligo density: (platform 1: 2006-07-18_Scerevisiae_ChIP_Stefan Jentsch MPI Biochemistry S.cerevisiae 385K Tiling Array Version 1) ( platform 2: 100304_Scer2_MS_Chip_Stefan Jentsch MPI Biochemistry S.cerevisiae 135K Tiling Array Version 2) ChIP-chip profiling of DSB repair factors (Rad51, Rad52, RPA, gamma-H2A) upon single inducible DSBs in S.cerevisiae
Project description:AID promotes chromosomal translocations by inducing DNA double-strand breaks (DSBs) at immunoglobulin (Ig) genes and oncogenes in G1. RPA is a ssDNA-binding protein that associates with resected DSBs in the S phase and facilitates the assembly of factors involved in homologous repair (HR) such as Rad51. Notably, RPA deposition also marks sites of AID-mediated damage, but its role in Ig gene recombination remains unclear. Here we demonstrate that RPA associates asymmetrically with resected ssDNA in response to lesions created by AID, RAG, or other nucleases. Small amounts of RPA are deposited at AID targets in G1 in an ATM-dependent manner. In contrast, recruitment in S-G2/M is extensive, ATM-independent, and associated with Rad51 accumulation. RPA in S-G2/M increases in NHEJ-deficient lymphocytes, where there is more extensive DNA-end resection. Thus, most RPA recruitment during CSR represents salvage of un-repaired breaks by homology-based pathways during the S-G2/M phases of the cell cycle. Chip-Seq of RPA from mouse activated B cells (n = 40), mouse thymocytes (n = 6), and MEFs (n = 1). Different genotypes and/or inhibitors were used.
Project description:In a first step of DNA double-strand break (DSB) repair by homologous recombination, DNA ends are resected such that single-stranded DNA (ssDNA) overhangs are generated. ssDNA is specifically bound by RPA and other factors, which constitutes a ssDNA-compartment on damaged chromatin. The molecular organization of this ssDNA- as well as the adjacent dsDNA-compartment is crucial during DSB signaling and repair. However, data regarding the association of the most basic chromatin components – the nucleosomes – have been discrepant. Here, we use site-specific induction of DSBs and chromatin-immunoprecipitation followed by strand-specific sequencing to analyse in vivo binding of key DSB repair and signalling proteins to either the ssDNA- or dsDNA-compartment. In case of nucleosomes, we show that recently proposed ssDNA-nucleosomes are not a major, persistent species, but that nucleosomes eviction and DNA end resection are intrinsically coupled. These results support a model of separated dsDNA-nucleosome- and ssDNA-RPA-compartments during DSB signaling and repair.
Project description:RIF1 acts downstream of 53BP1 to coordinate DNA double strand break repair pathway choice between non-homologous end joining (NHEJ) and homologous recombination (HR). Here we identified ASF1 as an endogenous RIF1-associated protein. We showed that ASF1 forms complex with RIF1 and regulates RIF1-dependent functions in DNA damage response.
Project description:The Mre11-Rad50-Nbs1 (MRN) complex recognizes and processes DNA double-strand breaks for homologous recombination by performing short-range removal of 5ʹ strands. Endonucleolytic processing by MRN requires a stably bound protein at the break site—a role we postulate is played by DNA-dependent protein kinase (DNA-PK) in mammals. Here we interrogate the sites of MRN-dependent processing by isolating and sequencing DNA-PK-bound DNA fragments that are products of MRN cleavage. These intermediates are generated with highest efficiency when DNA-PK is catalytically blocked, yielding products within 200 bp of the break site, whereas DNA-PK products in the absence of kinase inhibition show much greater dispersal. Use of light-activated Cas9 to induce breaks facilitates temporal resolution of DNA-PK and Mre11 binding, showing that Mre11 and DNA-PK both bind to DNA ends before release of DNA-PK-bound products. These results support a sequential model of double-strand break repair involving collaborative interactions between homologous and non-homologous repair complexes.
Project description:AID promotes chromosomal translocations by inducing DNA double-strand breaks (DSBs) at immunoglobulin (Ig) genes and oncogenes in G1. RPA is a ssDNA-binding protein that associates with resected DSBs in the S phase and facilitates the assembly of factors involved in homologous repair (HR) such as Rad51. Notably, RPA deposition also marks sites of AID-mediated damage, but its role in Ig gene recombination remains unclear. Here we demonstrate that RPA associates asymmetrically with resected ssDNA in response to lesions created by AID, RAG, or other nucleases. Small amounts of RPA are deposited at AID targets in G1 in an ATM-dependent manner. In contrast, recruitment in S-G2/M is extensive, ATM-independent, and associated with Rad51 accumulation. RPA in S-G2/M increases in NHEJ-deficient lymphocytes, where there is more extensive DNA-end resection. Thus, most RPA recruitment during CSR represents salvage of un-repaired breaks by homology-based pathways during the S-G2/M phases of the cell cycle.