ABSTRACT: Transcriptional responsen of phosphorus (re-)absorbing organs to diets varying in phosphorus content in pigs (low-intake medium intake high-intake)
Project description:Livers from 15 month old mice mainatined on one of 25 different diets varying in protein, carbohydrate, fat (P,C,F) and energy content were analysed. Energy content was categorised as low (8kJ/g), medium (13kJ/g) or high (17kJ/g) Mice were placed on diet from 3 weeks of age and a subset culled for various analyses. The rest of the cohort was allowed to live out their natural life to assess lifespan. We used microarrays to details the global programme of gene expression as a result of changes in dietary macronutrient composition and intake.
Project description:Livers from 15 month old mice mainatined on one of 25 different diets varying in protein, carbohydrate, fat (P,C,F) and energy content were analysed. Energy content was categorised as low (8kJ/g), medium (13kJ/g) or high (17kJ/g) Mice were placed on diet from 3 weeks of age and a subset culled for various analyses. The rest of the cohort was allowed to live out their natural life to assess lifespan. We used microarrays to details the global programme of gene expression as a result of changes in dietary macronutrient composition and intake. 30 cages of male and female mice per diet were used in this experiment. One mouse from each cage was randomly selected for harvest at 15 months old, while the others were left to age naturally. RNA from mouse livers were extracted and hybridized on Affymetrix microarrays
Project description:The aim of this study was to investigate whether long term intake of pea fiber would improve colonic barrier, bacterial profile and alter colonic gene expression using DNA microarray. Fifty weaned pigs were randomly allocated into 2 groups receiving control and fibrous diet with inclusion of pea fiber from weaning age until d 160. The two diets had similar nutrient levels. Pigs fed pea fiber diet (PF diet) had markedly decreased overall average daily feed intake (ADFI) and Feed:Gain in growing and finishing period (P<0.05). In addition, long term intake of PF diet induced deeper crypt (+50 %, P<0.05), increased protein expression of colonic mucin and sIgA (+13~16 %, P<0.05). Resulting from the increased lactobacillus content (P<0.05), moreover, pigs fed PF diet had significantly higher concentration of colonic total short chain fatty acid (SCFA) and acetic acid. DNA microarray results indicated that feeding PF diet induced alterations in the expression of colonic cancer, immune response and lipid metabolism-related genes, as well as genes involved in signal pathway such as intestinal immune network for IgA production, PPAR signaling pathway and nutrient metabolism-related pathways. Collectively, our results suggested that long term intake of PF diet would improve colonic health via altering colonic bacteria profile, colonic barriers, immune and metabolism related protein or gene expressions. A total of 50 weaned pigs (Duroc×Landrace×Yorkshire, initial body weight: 7.2±0.5 kg) were randomly allocated to 2 groups with 5 pens each group and 5 pig each pen. Pigs were fed control (Control) and fibrous diets (10~20 % inclusion of pea fiber, PF) from weaning at 28 day to 160 day-old-age, which is subjected to phase feeding by weaning diet (weaning to d 30 post-weaning), growing diet (d 30~90 postweaning) and finishing diet (d 90~160 postweaning) according to their physiological stage. At d 160 postweaning, four pigs each group were selected to be slaughtered for collection of colonic tissues and DNA microarray was applied to the colonic tissues for analysis of gene expression.
Project description:Transcriptional profiling in skeletal muscle of 48 pigs (132 days of age) originated from two lines divergently selected for residual feed intake (RFI) : low-RFI pigs (RFIneg), high-RFI pigs (RFIpl). Both lines were offered isocaloric and isoproteic diets with contrasted energy source and nutrients: low fat, low fiber (LF) diet or a high fat, high fiber (HF)diet during 10 weeks. Effects of RFI selection, diet and interaction between diet and line were investigated.
Project description:Transcriptional profiling in liver of 48 pigs (132 days of age) originated from two lines divergently selected for residual feed intake (RFI) : low-RFI pigs (RFIneg), high-RFI pigs (RFIpl). Both lines were offered isocaloric and isoproteic diets with contrasted energy source and nutrients: low fat, low fiber (LF) diet or a high fat, high fiber (HF)diet during 10 weeks. Effects of RFI selection, diet and interaction between diet and line were investigated.
Project description:The aim of this study was to investigate whether long term intake of pea fiber would improve colonic barrier, bacterial profile and alter colonic gene expression using DNA microarray. Fifty weaned pigs were randomly allocated into 2 groups receiving control and fibrous diet with inclusion of pea fiber from weaning age until d 160. The two diets had similar nutrient levels. Pigs fed pea fiber diet (PF diet) had markedly decreased overall average daily feed intake (ADFI) and Feed:Gain in growing and finishing period (P<0.05). In addition, long term intake of PF diet induced deeper crypt (+50 %, P<0.05), increased protein expression of colonic mucin and sIgA (+13~16 %, P<0.05). Resulting from the increased lactobacillus content (P<0.05), moreover, pigs fed PF diet had significantly higher concentration of colonic total short chain fatty acid (SCFA) and acetic acid. DNA microarray results indicated that feeding PF diet induced alterations in the expression of colonic cancer, immune response and lipid metabolism-related genes, as well as genes involved in signal pathway such as intestinal immune network for IgA production, PPAR signaling pathway and nutrient metabolism-related pathways. Collectively, our results suggested that long term intake of PF diet would improve colonic health via altering colonic bacteria profile, colonic barriers, immune and metabolism related protein or gene expressions.
Project description:Transcriptional profiling in the whole blood of 48 pigs (132 days of age) originated from two lines divergently selected for residual feed intake (RFI) : low-RFI pigs (RFIneg), high-RFI pigs (RFIpl). Both lines were offered isocaloric and isoproteic diets with contrasted energy source and nutrients: low fat, low fiber (LF) diet or a high fat, high fiber (HF)diet during 10 weeks. Effects of RFI selection, diet and interaction between diet and line were investigated.