Project description:While the regulatory landscape during stem cell differentiation has been well characterized, the shared and unique regulatory mechanisms in different ectodermally-derived epithelial cells have not been well described. Through defining the complement of super enhancers and typical enhancers in corneal epithelium for the first time, we show that regulatory regions are often shared between cell types of the same lineage, and that corneal super enhancers are already marked as potential regulatory domains in embryonic stem cells. Through the enrichment of KLF motifs in enhancers, we identified and defined a novel role for Kruppel family member KLF7 in promoting the corneal progenitor cell state, in many cases working antagonistically to corneal differentiation promoting KLF4. Our work highlights the importance of balance between proliferation and differentiation, both for proper tissue development and for homeostasis.
Project description:While the regulatory landscape during stem cell differentiation has been well characterized, the shared and unique regulatory mechanisms in different ectodermally-derived epithelial cells have not been well described. Through defining the complement of super enhancers and typical enhancers in corneal epithelium for the first time, we show that regulatory regions are often shared between cell types of the same lineage, and that corneal super enhancers are already marked as potential regulatory domains in embryonic stem cells. Through the enrichment of KLF motifs in enhancers, we identified and defined a novel role for Kruppel family member KLF7 in promoting the corneal progenitor cell state, in many cases working antagonistically to corneal differentiation promoting KLF4. Our work highlights the importance of balance between proliferation and differentiation, both for proper tissue development and for homeostasis.
Project description:While the regulatory landscape during stem cell differentiation has been well characterized, the shared and unique regulatory mechanisms in different ectodermally-derived epithelial cells have not been well described. Through defining the complement of super enhancers and typical enhancers in corneal epithelium for the first time, we show that regulatory regions are often shared between cell types of the same lineage, and that corneal super enhancers are already marked as potential regulatory domains in embryonic stem cells. Through the enrichment of KLF motifs in enhancers, we identified and defined a novel role for Kruppel family member KLF7 in promoting the corneal progenitor cell state, in many cases working antagonistically to corneal differentiation promoting KLF4. Our work highlights the importance of balance between proliferation and differentiation, both for proper tissue development and for homeostasis.
Project description:This experiment is part of the FunGenES project (FunGenES - Functional Genomics in Embryonic Stem Cells partially funded by the 6th Framework Programme of the European Union, http://www.fungenes.org). The experiment was conducted at Inserm U846, Bron, France. Aim: Kru_ppel-like factors (Klf) 4 and 5 are two closely related members of the Klf family, known to play key roles in somatic cell reprogramming and in self-renewal of pluripotent stem cells. In this study, we focused on the functional divergence between Klf4 and Klf5. We showed that Klf4 and Klf5 regulate the expression of distinct subsets of genes. Klf4 negatively regulates the expression of endodermal markers, some of which encode transcription factors involved in the commitment of pluripotent system cells to endoderm differentiation. In contrast, Klf5 negatively regulates the expression of mesodermal markers, some of which controls commitment to the mesoderm lineage. Functional studies with reporter cell lines indicate that knockdown of Klf4 enhances differentiation toward visceral endoderm, mesendoderm, and definitive endoderm, whereas knockdown of Klf5 specifically enhances differentiation toward mesoderm. Thus, additive functions of Klf4 and Klf5 secure pluripotent stem cell propagation by inhibiting endoderm and mesoderm differentiation.
Project description:This experiment is a follow-up experiment of the FunGenES project (FunGenES - Functional Genomics in Embryonic Stem Cells partially funded by the 6th Framework Programme of the European Union, http://www.fungenes.org). The experiment was conducted at Inserm U846, Bron, France. Aim: Kru_ppel-like factors (Klf) 4 and 5 are two closely related members of the Klf family, known to play key roles in somatic cell reprogramming and in self-renewal of pluripotent stem cells. In this study, we focused on the functional divergence between Klf4 and Klf5. We showed that Klf4 and Klf5 regulate the expression of distinct subsets of genes. Klf4 negatively regulates the expression of endodermal markers, some of which encode transcription factors involved in the commitment of pluripotent system cells to endoderm differentiation. In contrast, Klf5 negatively regulates the expression of mesodermal markers, some of which controls commitment to the mesoderm lineage. Functional studies with reporter cell lines indicate that knockdown of Klf4 enhances differentiation toward visceral endoderm, mesendoderm, and definitive endoderm, whereas knockdown of Klf5 specifically enhances differentiation toward mesoderm. Thus, additive functions of Klf4 and Klf5 secure pluripotent stem cell propagation by inhibiting endoderm and mesoderm differentiation.
Project description:KLF7, a member of the KLF family, is an evolutionarily conserved zinc finger-containing transcription factor. Previous studies demonstrated that KLF7 possesses diverse regulatory functions related to embryogenesis, cell growth, proliferation, and differentiation. Our results reveal that there was an increased abundance of KLF7 in OSM-treated HaCaT cells. Mechanistically, our results showed that OSM induces epidermal keratinocyte differentiation through phosphorylation of STAT5, which binds to the promoter and activates KLF7 transcription.
Project description:The cornea, composed of epithelium, stroma and endothelium, protects the anterior compartment of the eye from damage and allows transmission of light into the eye. While well described morphologically, no studies have investigated the global gene expression changes in the cornea throughout the mouseM-bM-^@M-^Ys life. We characterized the global gene expression profile of mouse cornea from early development through aging, and compared to gene expression in other epithelial tissue, to identify cornea enriched genes, pathways, and transcriptional regulators. We identified Ehf, an ets family transcription factor, as being highly selectively expressed in the corneal epithelium compared to the stroma, and highly expressed in cornea compared to other epithelial tissues. siRNA experiments and Ehf ChIP-Seq on mouse corneal epithelium confirm the role of this factor in promoting epithelial identity and cell differentiation, and suggest it carries out these functions through interactions with other cornea epithelial differentiation factors including Klf4. Whole eye globes were dissected from wild type CB6 mice. Corneal epithelium was isolated by digestion in 50% EMEM/dispase II with 50 mM sorbitol for two hours at 37M-BM-0C. ChIP was performed with an Ehf antibody, and was sequenced with an input control.