Project description:Glucocorticoids are a class of steroid hormones that bind to and activate the Glucocorticoid Receptor, which then positively or negatively regulates transcription of many genes that govern multiple important physiological pathways such as inflammation and metabolism of glucose, fat and bone. Previous studies focusing on single coregulators demonstrated that each coregulator is required for regulation of only a subset of all the genes regulated by a steroid hormone. We hypothesize that the gene-specific patterns of coregulators may correspond to specific physiological pathways such that different coregulators modulate the pathway-specificity of hormone action and thus provide a mechanism for fine tuning of the hormone response. Global analysis of glucocorticoid-regulated gene expression after siRNA mediated depletion of coregulators confirmed that each coregulator acted in a selective and gene-specific manner and demonstrated both positive and negative effects on glucocorticoid-regulated expression of different genes. Each coregulator supported hormonal regulation of some genes and opposed hormonal regulation of other genes (coregulator-modulated genes), blocked hormonal regulation of a second class of genes (coregulator-blocked genes), and had no effect on hormonal regulation of a third gene class (coregulator-independent genes). In spite of previously demonstrated physical and functional interactions among these four coregulators, the majority of the several hundred modulated and blocked genes for each of the four coregulators tested were unique to that coregulator. Finally, pathway analysis on coregulator-modulated genes supported the hypothesis that individual coregulators may regulate only a subset of the many physiological pathways controlled by glucocorticoids.
Project description:The glucocorticoid-activated glucocorticoid receptor (GR) regulates cellular stress pathways by binding to genomic regulatory elements of target genes and recruiting coregulator proteins to remodel chromatin and regulate transcription complex assembly. The coregulator Hydrogen peroxide-inducible clone 5 (Hic-5) is required for glucocorticoid regulation of some genes, but not others, and blocks regulation of a third gene set. Hic-5 inhibits GR binding to blocked genes but not other glucocorticoid-regulated genes. Site-specific blocking of GR binding is due to gene-specific requirements for ATP-dependent chromatin remodeling enzymes. We investigate whether ATPases CHD9 and BRM were required for glucocorticoid-regulated expression of Hic-5 blocked genes.
Project description:The glucocorticoid-activated glucocorticoid receptor (GR) regulates cellular stress pathways by binding to genomic regulatory elements of target genes and recruiting coregulator proteins to remodel chromatin and regulate transcription complex assembly. The coregulator Hydrogen peroxide-inducible clone 5 (Hic-5) is required for glucocorticoid regulation of some genes, but not others, and blocks regulation of a third gene set. Hic-5 inhibits GR binding to blocked genes but not other glucocorticoid-regulated genes. Site-specific blocking of GR binding is due to gene-specific requirements for ATP-dependent chromatin remodeling enzymes. We investigate the effects of Hic-5 and dexamethasone on chromatin accessibility at GR binding sites near Hic-5 blocked genes and non-blocked genes.
Project description:The glucocorticoid-activated glucocorticoid receptor (GR) regulates cellular stress pathways by binding to genomic regulatory elements of target genes and recruiting coregulator proteins to remodel chromatin and regulate transcription complex assembly. The coregulator Hydrogen peroxide-inducible clone 5 (Hic-5) is required for glucocorticoid regulation of some genes, but not others, and blocks regulation of a third gene set. Hic-5 inhibits GR binding to blocked genes but not other glucocorticoid-regulated genes. Site-specific blocking of GR binding is due to gene-specific requirements for ATP-dependent chromatin remodeling enzymes. We investigate whether ATPases CHD9 and BRM were required for GR occupancy at GR binding sites near Hic-5 blocked genes.
Project description:The glucocorticoid receptor (GR) recruits many coregulators via the well characterized AF2 interaction surface in the GR ligand binding domain, but LIM domain coregulator Hic-5 binds to the relatively uncharacterized tau2 activation domain in the hinge region of GR. Requirement of Hic-5 for glucocorticoid-regulated gene expression in U2OS osteosarcoma cells was defined by Hic-5 depletion and global gene expression analysis. Hic-5 depletion had selective and dramatic effects, positive and negative, on both activation and repression of GR target genes. For some hormone-induced genes, Hic-5 facilitated recruitment of the Mediator complex and RNA polymerase II. In contrast, many genes were not regulated by hormone until Hic-5 was depleted. On these genes Hic-5 acted at a very early step of the regulatory process, preventing efficient GR binding on enhancers, chromatin remodeling, and thus preventing glucocorticoid-driven transcriptional regulation. Overall, Hic-5 has selective and diverse roles on GR target genes, functioning as coactivator on some genes and corepressor on others, and either facilitating or opposing the glucocorticoid-driven actions of GR. Hic-5 exhibits multiple mechanisms of action, either regulating GR binding to DNA and chromatin remodeling, or facilitating later steps in transcription complex assembly. We investigate the relationship between GR and Hic5 and identify classes of genes that respond differently when cells are induced with hormone and when Hic5 is knocked down We knock down Hic-5 (TGFB1I1) in U2OS cells using siRNA (siHic5_2) along with nonspecific siRNA (shNS) and assay gene expression changes at 4 different time points of hormone treatment. We also include non-infected control (NI) as a second control at each time point.
Project description:The glucocorticoid receptor (GR) recruits many coregulators via the well characterized AF2 interaction surface in the GR ligand binding domain, but LIM domain coregulator Hic-5 binds to the relatively uncharacterized tau2 activation domain in the hinge region of GR. Requirement of Hic-5 for glucocorticoid-regulated gene expression in U2OS osteosarcoma cells was defined by Hic-5 depletion and global gene expression analysis. Hic-5 depletion had selective and dramatic effects, positive and negative, on both activation and repression of GR target genes. For some hormone-induced genes, Hic-5 facilitated recruitment of the Mediator complex and RNA polymerase II. In contrast, many genes were not regulated by hormone until Hic-5 was depleted. On these genes Hic-5 acted at a very early step of the regulatory process, preventing efficient GR binding on enhancers, chromatin remodeling, and thus preventing glucocorticoid-driven transcriptional regulation. Overall, Hic-5 has selective and diverse roles on GR target genes, functioning as coactivator on some genes and corepressor on others, and either facilitating or opposing the glucocorticoid-driven actions of GR. Hic-5 exhibits multiple mechanisms of action, either regulating GR binding to DNA and chromatin remodeling, or facilitating later steps in transcription complex assembly. We investigate the relationship between GR and Hic5 and identify classes of genes that respond differently when cells are induced with hormone and when Hic5 is knocked down We knock down Hic-5 (TGFB1I1) in U2OS cells using two different siRNA (siHic5_2 and siHic5_5) along with nonspecific siRNA (shNS) and assay gene expression changes at 4 different time points of hormone treatment. We also include non-infected control (NI) as a second control at each time point.
Project description:The glucocorticoid receptor (GR) recruits many coregulators via the well characterized AF2 interaction surface in the GR ligand binding domain, but LIM domain coregulator Hic-5 binds to the relatively uncharacterized tau2 activation domain in the hinge region of GR. Requirement of Hic-5 for glucocorticoid-regulated gene expression in U2OS osteosarcoma cells was defined by Hic-5 depletion and global gene expression analysis. Hic-5 depletion had selective and dramatic effects, positive and negative, on both activation and repression of GR target genes. For some hormone-induced genes, Hic-5 facilitated recruitment of the Mediator complex and RNA polymerase II. In contrast, many genes were not regulated by hormone until Hic-5 was depleted. On these genes Hic-5 acted at a very early step of the regulatory process, preventing efficient GR binding on enhancers, chromatin remodeling, and thus preventing glucocorticoid-driven transcriptional regulation. Overall, Hic-5 has selective and diverse roles on GR target genes, functioning as coactivator on some genes and corepressor on others, and either facilitating or opposing the glucocorticoid-driven actions of GR. Hic-5 exhibits multiple mechanisms of action, either regulating GR binding to DNA and chromatin remodeling, or facilitating later steps in transcription complex assembly. We investigate the relationship between GR and Hic5 and identify classes of genes that respond differently when cells are induced with hormone and when Hic5 is knocked down
Project description:The glucocorticoid receptor (GR) recruits many coregulators via the well characterized AF2 interaction surface in the GR ligand binding domain, but LIM domain coregulator Hic-5 binds to the relatively uncharacterized tau2 activation domain in the hinge region of GR. Requirement of Hic-5 for glucocorticoid-regulated gene expression in U2OS osteosarcoma cells was defined by Hic-5 depletion and global gene expression analysis. Hic-5 depletion had selective and dramatic effects, positive and negative, on both activation and repression of GR target genes. For some hormone-induced genes, Hic-5 facilitated recruitment of the Mediator complex and RNA polymerase II. In contrast, many genes were not regulated by hormone until Hic-5 was depleted. On these genes Hic-5 acted at a very early step of the regulatory process, preventing efficient GR binding on enhancers, chromatin remodeling, and thus preventing glucocorticoid-driven transcriptional regulation. Overall, Hic-5 has selective and diverse roles on GR target genes, functioning as coactivator on some genes and corepressor on others, and either facilitating or opposing the glucocorticoid-driven actions of GR. Hic-5 exhibits multiple mechanisms of action, either regulating GR binding to DNA and chromatin remodeling, or facilitating later steps in transcription complex assembly. We investigate the relationship between GR and Hic5 and identify classes of genes that respond differently when cells are induced with hormone and when Hic5 is knocked down