Project description:Hymenopellis is the most diverse genus in the group of oudemansielloid/xeruloid taxa (Physalacriaceae). This genus has a worldwide distribution with records mostly from Europe and America. Asian taxa are least represented. In this paper on Hymenopellis from Thailand, two novel species are introduced, and a Hymenopellis collection affine to H.orientalis is described. Macro and micromorphological characters are described. Maximum likelihood and Bayesian phylogenetic analyses were performed on combined ITS and nrLSU regions to confirm taxonomical placement and infer the phylogenetic affinities of the studied species. Hymenopellisstraminea sp. nov. is straw-yellow, with medium-sized basidiomata, abundant and diverse in form cheilocystidia, few, narrowly lageniform to fusiform pleurocystidia, and clamp connections at the lower part of the stipe. Hymenopellisutriformis sp. nov. has mostly utriform pleurocystidia and 2-spored basidia. In the inferred phylogenies, the new species from this study formed distinct clades well supported by bootstrap proportions and posterior probabilities. The studied specimen affine to H.orientalis produced 2-spored basidia whereas published descriptions of other specimens mention 4-spored basidia. Moreover, the genetic distance between ITS sequences of this specimen and that of a Hymenopellisorientalis specimen from GenBank was 1.30-2.57%. Therefore, the conspecificity of our specimen with H.orientalis is uncertain, and additional specimens are needed to fully confirm its identity.
Project description:Through whole-genome re-sequencing of 18 Hymenopellis radicata germplasm resources collected from diverse regions in China, we identified significant variations in the form of Single Nucleotide Polymorphisms (SNPs) and Insertions and Deletions (InDels). These variations were comprehensively annotated, shedding light on the mutation types present in the entire genome of the H. radicata germplasm. This analysis revealed the number and position information of each mutation and provided insights into the overall genomic landscape of H. radicata germplasm. Utilizing SNP data, we delved into the population structure of the 18 H. radicata germplasm resources. The results indicated the presence of 2,335,179 Indel sites and 12,050,448 SNP sites. The population structure analysis unveiled two distinct subgroups among the H. radicata germplasm resources. Phenotypic statistics, principal component analysis, and phylogenetic tree results echoed the findings of the population structure analysis. Different strains of H. radicata from various regions in China exhibited notable differences in genetic diversity, mycelial growth rate, yield, and fruiting body characteristics. Significant disparities were observed between the two subgroups, while strains within each subgroup shared common characteristics. This research establishes a solid foundation for integrating H. radicata into diverse breeding programs. The data underscore the potential of H. radicata for genetic improvement and exploitation in breeding initiatives, paving the way for future advancements in this field.