Project description:The liver of dairy cows naturally displays a series of metabolic adaptation during the periparturient period in response to the increasing nutrient requirement of lactation. The hepatic adaptation is partly regulated by insulin resistance and it is affected by the prepartal energy intake level of cows. We aimed to investigate the metabolic changes in the liver of dairy cows during the periparturient at gene expression level and to study the effect of prepartal energy level on the metabolic adaptation at gene expression level.B13:N13
Project description:Infertility in lactating dairy cows is explained partially by the metabolic state associated with high milk production. The hypothesis was that lactating and non-lactating cows would differ in endometrial and placental transcriptomes during early pregnancy (day 28 to 42) and this difference would explain the predisposition for lactating cows to have embryonic loss at that time. Cows were either milked or not milked after calving. Reproductive [endometrium (caruncular and intercarunclar) and placenta] and liver tissues were collected on day 28, 35, and 42 of pregnancy. The primary hypothesis was rejected because no effect of lactation on mRNA abundance within reproductive tissues was found. Large differences within liver demonstrated the utility of the model to test an effect of lactation on tissue gene expression. Major changes in gene expression in reproductive tissues across time were found. Greater activation of the transcriptome for the recruitment and activation of macrophages was found in the endometrium and placenta. Changes in glucose metabolism between day 28 and 42 included greater mRNA abundance of rate-limiting genes for gluconeogenesis in intercaruncular endometrium and evidence for the establishment of aerobic glycolysis (Warburg effect) in the placenta. Temporal changes were predicted to be controlled by CSF1, PDGFB, and JUN. Production of nitric oxide and reactive oxygen species by macrophages was a mechanism to promote angiogenesis in the endometrium. Reported differences in pregnancy development for lactating versus non-lactating cows could be explained by systemic glucose availability to the conceptus and appear to be independent of the endometrial and placental transcriptomes.
Project description:Liver plays a profound role in the acute phase response (APR) observed in the early phase of acute bovine mastitis caused by Escherichia coli (E. coli). To gain an insight into the genes and pathways involved in hepatic APR of dairy cows we performed a global gene expression analysis of liver tissue sampled at different time points before and after intra-mammary (IM) exposure to E. coli lipopolysaccharide (LPS) treatment. Experiment Overall Design: Eight healthy, high yielding Holstein-Friesian dairy cows in their first lactation (9 to 12 weeks after calving) were chosen for this study. At time 0 the right front quarter was infused with 200 μg E. coli LPS dissolved in 10 ml 0.9% NaCl solution, the left front quarter serving as control was infused with 10 ml 0.9% NaCl solution. Liver biopsies were taken at â22, 3, 6, 9, 12 and 48 hours relative to LPS infusion in 4 cows, and also at â22, 9 and 48 hours in the remaining 4 cows. RNA from liver biopsies was isolated and biotin labeled cRNA was loaded onto the Affymetric GeneChip Bovine Genome Array. A control study using cows infused with 0.9% NaCl showed that there was no effect of taking the biopsy, neither in the clinical measurement nor in the expression of a selected subset of genes. Therefore, only samples taken from the LPS treated cows were measured for the gene expression using microarrays.
Project description:M. Berg, J. Plöntzke, S. Leonhard-Marek, K.E. Müller & S. Röblitz. A dynamic model to simulate potassium balance in dairy cows. Journal of Dairy Science 100, 12 (2017).
High-performing dairy cows require a particular composition of nutritional ingredients, adapted to their individual requirements and depending on their production status. The optimal dimensioning of minerals in the diet, one being potassium, is indispensable for the prevention of imbalances. Potassium balance in cows is the result of potassium intake, distribution in the organism, and excretion, and it is closely related to glucose and electrolyte metabolism. In this paper, we present a dynamical model for potassium balance in lactating and nonlactating dairy cows based on ordinary differential equations. Parameter values were obtained from clinical trial data and from the literature. To verify the consistency of the model, we present simulation outcomes for 3 different scenarios: potassium balance in (1) nonlactating cows with varying feed intake, (2) nonlactating cows with varying potassium fraction in the diet, and (3) lactating cows with varying milk production levels. The results give insights into the short- and long-term potassium metabolism, providing an important step toward the understanding of the potassium network, the design of prophylactic feed additives, and possible treatment strategies.
Project description:Consequences of supplying methyl donors during pregnancy on the methylome of the offspring from lactating and non-lactating dairy cattle
Project description:Heat stress (HS) has become a major challenge in the dairy industry around the world. Although numerous measures have been taken to alleviate the HS impact on milk production, the cellular level response to HS remains unclear in dairy cows. The objective of this study was to dissect functional alterations based on transcriptomic dynamics in the liver of cows under HS. Dairy cows exposed to HS exhibited both decreased feed intake and milk yield. Through liver transcriptomic analysis, differentially expressed genes were identified among three experimental conditions, including heat stress (HS), pair-fed (PF), and thermoneutral (TN) groups. We observed the upregulation of protein folding and inflammation-related genes in the HS group, while the mitochondrial genes were downregulated. Gene functional enrichment also revealed that mitochondria function and oxidative phosphorylation were dysregulated under HS. The liver transcriptome analysis generated a comprehensive gene expression regulation network upon HS in lactating dairy cows. Overall, this study provides novel insights into molecular and metabolic changes of cows conditioned under HS. Our results could facilitate the development of efficient biomarkers to mitigate the negative effect of HS on dairy cow health and productivity.