Project description:EBV-encoded proteins interfere with extrinsic and intrinsic apoptotic pathways so that homeostasis of infected cells shifts to survival and proliferation favoring to evasion of virus from immune surveillance.The aim of investigation is to reveal the key factors regulating Fas- и DR3-triggered cascades influenced by EBV in naïve T-cells. We developed the splicing-sensitive microarray covering 221 genes encoding apoptosis-associated factors, adaptor proteins, kinases, RNA-binding proteins (including spliceosome elements) etc. Naïve CD4+ and CD8+ T-cells isolated from the same EBV-infected patient during acute mononucleosis and after therapy were analyzed.
Project description:Affymetrix HuGene ST 1.0 microarrays were used to study and compare gene expression in peripheral blood CD8+ T cells of human patients with Acute Infectious Mononucleosis (AIM; acute EBV infection) and during convalescence (CONV; 6-12 months after AIM visit). Blood samples were drawn from ten human patients with AIM and again during their covalescence (CONV). Peripheral blood mononuclear cells were isolated and cryopreserved. Paired AIM and CONV samples were thawed and CD8+ T cells purified with magnetic beads. RNA was isolated and processed for hybridization according to the Affymetrix protocol CD8+ T cells acute and convalescent phase of EBV infection (10 subjects)
Project description:Analysis on gene expression between RA-induced WT, Fas^lpr/lpr, and Fas^gld/gld mice. Data shows different expression pattern between Fas^gld/gld joint and Fas^lpr/lpr(or WT) mice. The reseults indicate sFasL-dependent, but Fas-independent gene expression during AIA
Project description:Understanding the mechanisms of CD4 memory T cell (Tmem) differentiation in malaria is critical for vaccine development. However, the metabolic regulation of CD4 Tmem differentiation is not clear, particularly in persistent infections. In this study, we investigated the role of fatty acid synthesis (FAS) in Tmem development in Plasmodium chabaudi chronic mouse malaria infection. We show that T cell-specific deletion, and early pharmaceutical inhibition of acetyl coA carboxylase 1, the rate limiting step of FAS, inhibit generation of early memory precursor effector T cells (MPEC). To compare the role of FAS during early differentiation or survival of Tmem in chronic infection, a specific inhibitor of acetyl coA carboxylase 1, 5-(Tetradecyloxy)-2-furoic acid, was administered at different times postinfection. Strikingly, the number of Tmem was only reduced when FAS was inhibited during T cell priming, but not during the Tmem survival phase. FAS inhibition during priming increased effector T cells (Teff) proliferation, and strongly decreased peak parasitemia, which is consistent with improved Teff function. Conversely, MPEC were decreased, in a T cell-intrinsic manner, upon early FAS inhibition in chronic, but not acute, infection. Early cure of infection also increased mitochondrial volume in Tmem compared to Teff, supporting previous reports in acute infection. We demonstrate that the MPEC-specific effect was due to the higher fatty acid content and synthesis in MPEC compared to terminally differentiated Teff. In conclusion, FAS in CD4 T cells regulates the early divergence of Tmem from Teff in chronic infection.
Project description:Epstein-Barr Virus (EBV) is associated with numerous cancers including B cell lymphomas. In vitro, EBV transforms primary B cells into immortalized Lymphoblastoid Cell Lines (LCLs) which serves as a model to study the role of viral proteins in EBV malignancies. EBV induced cellular transformation is driven by viral proteins including EBV-Nuclear Antigens (EBNAs). EBNA-LP is important for the transformation of naïve but not memory B cells. While EBNA-LP was thought to promote gene activation by EBNA2, EBNA-LP Knock Out (LPKO) virus-infected cells express EBNA2-activated cellular genes efficiently. Therefore, a gap in knowledge exists as to what roles EBNA-LP plays in naïve B cell transformation. We developed a trans-complementation assay wherein transfection with wild-type EBNA-LP rescues the transformation of peripheral blood- and cord blood-derived naïve B cells by LPKO virus. Despite EBNA-LP phosphorylation sites being important in EBNA2 co-activation; neither phospho-mutant nor phospho-mimetic EBNA-LP was defective in rescuing naïve B cell outgrowth. However, we identified conserved leucine-rich motifs in EBNA-LP that were required for transformation of adult naïve and cord blood B cells. Because cellular PPAR-g coactivator (PGC) proteins use leucine-rich motifs to engage transcription factors including YY1, a key regulator of DNA looping and metabolism, we examined the role of EBNA-LP in engaging cellular transcription factors. We found a significant overlap between EBNA-LP and YY1 in ChIP-Seq data. By Cut&Run, YY1 peaks unique to WT compared to LPKO LCLs occur at more highly expressed genes. Moreover, Cas9 knockout of YY1 in primary B cells prior to EBV infection indicted YY1 to be essential for EBV-mediated transformation. We confirmed EBNA-LP and YY1and confirmed their biochemical association in LCLs by endogenous co-immunoprecipitation and. Moreover, we found that the EBNA-LP leucine-rich motifs were required for YY1 interaction in LCLs. Finally, we used Cas9 to knockout YY1 in primary total B cells and naïve B cells prior to EBV infection and found YY1 to be essential for EBV-mediated transformation. We propose that EBNA-LP engages YY1 through conserved leucine-rich motifs to promote EBV transformation of naïve B cells.
Project description:Epstein-Barr Virus (EBV) is associated with numerous cancers including B cell lymphomas. In vitro, EBV transforms primary B cells into immortalized Lymphoblastoid Cell Lines (LCLs) which serves as a model to study the role of viral proteins in EBV malignancies. EBV induced cellular transformation is driven by viral proteins including EBV-Nuclear Antigens (EBNAs). EBNA-LP is important for the transformation of naïve but not memory B cells. While EBNA-LP was thought to promote gene activation by EBNA2, EBNA-LP Knock Out (LPKO) virus-infected cells express EBNA2-activated cellular genes efficiently. Therefore, a gap in knowledge exists as to what roles EBNA-LP plays in naïve B cell transformation. We developed a trans-complementation assay wherein transfection with wild-type EBNA-LP rescues the transformation of peripheral blood- and cord blood-derived naïve B cells by LPKO virus. Despite EBNA-LP phosphorylation sites being important in EBNA2 co-activation; neither phospho-mutant nor phospho-mimetic EBNA-LP was defective in rescuing naïve B cell outgrowth. However, we identified conserved leucine-rich motifs in EBNA-LP that were required for transformation of adult naïve and cord blood B cells. Because cellular PPAR-g coactivator (PGC) proteins use leucine-rich motifs to engage transcription factors including YY1, a key regulator of DNA looping and metabolism, we examined the role of EBNA-LP in engaging cellular transcription factors. We found a significant overlap between EBNA-LP and YY1 in ChIP-Seq data. By Cut&Run, YY1 peaks unique to WT compared to LPKO LCLs occur at more highly expressed genes. Moreover, Cas9 knockout of YY1 in primary B cells prior to EBV infection indicted YY1 to be essential for EBV-mediated transformation. We confirmed EBNA-LP and YY1and confirmed their biochemical association in LCLs by endogenous co-immunoprecipitation and. Moreover, we found that the EBNA-LP leucine-rich motifs were required for YY1 interaction in LCLs. Finally, we used Cas9 to knockout YY1 in primary total B cells and naïve B cells prior to EBV infection and found YY1 to be essential for EBV-mediated transformation. We propose that EBNA-LP engages YY1 through conserved leucine-rich motifs to promote EBV transformation of naïve B cells.
Project description:Epstein-Barr Virus (EBV) is associated with numerous cancers including B cell lymphomas. In vitro, EBV transforms primary B cells into immortalized Lymphoblastoid Cell Lines (LCLs) which serves as a model to study the role of viral proteins in EBV malignancies. EBV induced cellular transformation is driven by viral proteins including EBV-Nuclear Antigens (EBNAs). EBNA-LP is important for the transformation of naïve but not memory B cells. While EBNA-LP was thought to promote gene activation by EBNA2, EBNA-LP Knock Out (LPKO) virus-infected cells express EBNA2-activated cellular genes efficiently. Therefore, a gap in knowledge exists as to what roles EBNA-LP plays in naïve B cell transformation. We developed a trans-complementation assay wherein transfection with wild-type EBNA-LP rescues the transformation of peripheral blood- and cord blood-derived naïve B cells by LPKO virus. Despite EBNA-LP phosphorylation sites being important in EBNA2 co-activation; neither phospho-mutant nor phospho-mimetic EBNA-LP was defective in rescuing naïve B cell outgrowth. However, we identified conserved leucine-rich motifs in EBNA-LP that were required for transformation of adult naïve and cord blood B cells. Because cellular PPAR-g coactivator (PGC) proteins use leucine-rich motifs to engage transcription factors including YY1, a key regulator of DNA looping and metabolism, we examined the role of EBNA-LP in engaging cellular transcription factors. We found a significant overlap between EBNA-LP and YY1 in ChIP-Seq data. By Cut&Run, YY1 peaks unique to WT compared to LPKO LCLs occur at more highly expressed genes. Moreover, Cas9 knockout of YY1 in primary B cells prior to EBV infection indicted YY1 to be essential for EBV-mediated transformation. We confirmed EBNA-LP and YY1and confirmed their biochemical association in LCLs by endogenous co-immunoprecipitation and. Moreover, we found that the EBNA-LP leucine-rich motifs were required for YY1 interaction in LCLs. Finally, we used Cas9 to knockout YY1 in primary total B cells and naïve B cells prior to EBV infection and found YY1 to be essential for EBV-mediated transformation. We propose that EBNA-LP engages YY1 through conserved leucine-rich motifs to promote EBV transformation of naïve B cells.
Project description:CD4 and CD8 T cells display functional defects during chronic infection such as loss of certain cytokines. Recent studies have suggested that CD4 T cells may actually gain other functions, however. Here, we analyzed gene expression profiles from LCMV-specific CD4 and CD8 T cells throughout the response to either acute LCMV or chronic LCMV infection. This alllowed us to identify CD4-specific changes during chronic infection compared to acute infection but also revealed shared core regulators between CD4 and CD8 T cells. LCMV-specific CD4 and CD8 T cells were isolated 6, 8, 15 and 30 days post infection with LCMV Armstrong or LCMV clone 13. Naïve CD4 and CD8 T cells were also isolated from naïve mice as comparisons. Four replicates of each sample were hybridized. The only exception is LCMV-specific CD4 T cells isolated 6 days post infection with LCMV-Arm where only three replicates were hybridized.