Project description:In order to evaluate the molecular effects of Roundup at a concentration at which no morphological effects were identified, RNA extracted from Roundup-treated A. nidulans cultures were subjected to a global gene expression profiling using a custom agilent microarray (8 × 15 K format), for which the reproducibility, specificity and sensitivity was described previously (Delomenie et al., Curr Genet 2016 Nov;62(4):897-910. PMID: 27038308). This data is published in Mesnage R, Oestreicher N, Poirier F, Nicolas V, Boursier C, Vélot C. (2020) Transcriptome profiling of the fungus Aspergillus nidulans exposed to a commercial glyphosate-based herbicide under conditions of apparent herbicide tolerance. Environmental Research. Available online 7 January 2020, 109116. https://doi.org/10.1016/j.envres.2020.109116
Project description:Investigation of whole genome gene expression level changes in Aspergillus nidulans OE::rsmA compared to wild-type RDIT9.32 (veA). A twelve array study using total RNA recovered from six separate cultures of Aspergillus nidulans wild-type RDIT9.32 (veA) and six separate cultures of Aspergillus nidulans overexpressing rsmA (restorer of secondary metabolism A), using custom-designed, four-plex arrays. The experiment was divided into two runs. In the first run, three biological replicates each of Aspergillus nidulans wild-type RDIT9.32 (veA) and Aspergillus nidulans carrying a plasmid overexpressing rsmA under the control of the gpdA promoter were assayed. In the second run, three biological replicates each of Aspergillus nidulans wild-type RDIT9.32 (veA) and Aspergillus nidulans overexpressing rsmA at the native locus under the control of the gpdA promoter were assayed.
Project description:Investigation of whole genome gene expression level changes in Aspergillus nidulans AN1599 (PbcR) overexpression mutant, compared to the FGSC A4 wild-type strain. Overexpression of the Zn(II)2Cys6 –type transcription factor, AN1599.4 (PbcR, pimaradiene biosynthetic cluster regulator), activates a secondary metabolite gene cluster in Aspergillus nidulans. Activation of the pathway in Aspergillus nidulans lead to a production of ent-pimara-8(14),15-diene.
Project description:The full genome sequencing of the filamentous fungi Aspergillus nidulans, Aspergillus niger and Aspergillus oryzae has opened the possibilities for studying the cellular physiology of these fungi on a systemic level. As a tool to explore this, we are presenting an Affymetrix GeneChip developed for transcriptome analysis of any of the three above-mentioned aspergilli. Transcriptome analysis of triplicate batch cultivations of all three aspergilli on glucose-and xylose media has been performed, and used to validate the performance of the micro array. By doing gene comparisons of all three species, and cross-analysing this with the expression data, 23 genes, including the xylose transcriptional activator XlnR, have been identified to be a conserved response across the Aspergillus sp. Promoter analysis of the upregulated genes in all three species suggest the XlnR-binding site to be 5’-GGNTAAA-3’. We are thus presenting a validated tool for transcription analysis of three Aspergillus species and a methodology for comparative transcriptomics. Keywords: Physiological response
Project description:Gene expression analysis of four different treatments of Aspergillus nidulans. reference line (A.nidulans), line A (A.nidulans + Streptomyces rapamycinicus), line B (A.nidulans + orsellinic acid), line C (A.nidulans + lecanoric acid)
Project description:The genome of the osmophilic Aspergillus wentii, unlike that of the osmotolerant Aspergillus nidulans, contains only the gfdA but not the gfdB glycerol 3-phosphate dehydrogenase gene. Here, we studied transcriptomic changes of A. nidulans (reference strain and DgfdB gene deletion mutant) and A. wentii (reference strain and An-gfdB expressing mutant) elicited by high osmolarity. A. nidulans showed canonic hyperosmotic stress response characterized by upregulation of trehalose and glycerol metabolism genes (including gfdB) as well as genes of the high-osmolarity glycerol (HOG) map kinase pathway. Deletion of gfdB caused only negligible alterations in the transcriptome suggesting that the glycerol metabolism was flexible enough to compensate for the missing GfdB activity in this species. A. wentii responded differently to increased osmolarity than A. nidulans: E.g.; bulk upregulation of glycerol and trehalose metabolism genes as well as HOG pathway genes were not detected. Expression of An-gfdB in A. wentii did not abolish osmophilia, but it reduced growth and caused much bigger alterations in the transcriptome than the missing gfdB gene did in A. nidulans. Flexible glycerol metabolism and hence two differently regulated gfd genes may be more beneficial for osmotolerant (living under changing osmolarity) than for osmophilic (living under constantly high osmolarity) species.
Project description:The study aims essentially at the characterisation of suberin degradation mechanisms by Aspergillus nidulans, at a fundamental level. Suberin is an important protective barrier in plant, thus the study of its biodegradation significantly impacts on phytopatology. In addition, fungal suberin degrading enzymes might provide important insights to develop new waste management, bioremediation and biodeterioration prevention strategies.
Project description:The full genome sequencing of the ?lamentous fungi Aspergillus nidulans, Aspergillus niger and Aspergillus oryzae has opened the possibilities for studying the cellular physiology of these fungi on a systemic level. As a tool to explore this, we are presenting an A?ymetrix GeneChip developed for transcriptome analysis of any of the three above-mentioned aspergilli. Transcriptome analysis of triplicate batch cultivations of all three aspergilli on glucose-and xylose media has been performed, and used to validate the performance of the micro array. By doing gene comparisons of all three species, and cross-analysing this with the expression data, 23 genes, including the xylose transcriptional activator XlnR, have been identi?ed to be a conserved response across the Aspergillus sp. Promoter analysis of the upregulated genes in all three species suggest the XlnR-binding site to be 5’-GGNTAAA-3’. We are thus presenting a validated tool for transcription analysis of three Aspergillus species and a methodology for comparative transcriptomics. Keywords: Physiological response Two conditions (glucose and xylose) and three biological replicates of each.