Project description:Comparative analysis of tobacco leaves transcriptomes unveils carotenoid pathway potentially determined the characteristics of aroma compounds in different environmental regions. Tobacco (Nicotiana tabacum) is a sensitive crop to environmental changes, and a tobacco with unique volatile aroma fractions always formed in specific ecological conditions. In order to investigate the differential expressed genes caused by environmental changes and reveal the formation mechanism of characteristics of tobacco in three different aroma tobacco regions of Guizhou Province, Agilent tobacco microarray was adapted for transcriptome comparison of tobacco leaves in medium aroma tobacco region Kaiyang and light aroma tobacco regions Weining and Tianzhu. Results showed that there was big difference among the gene expression profiles of tobacco leaves in different environmental conditions. A total of 517 differential expressed genes (DEGs) between Weining and Tianzhu were identified, while 733 and 1,005 genes differentially expressed between Longgang and another two tobacco regions Weining and Tianzhu, respectively. Compared with Longgang, up-regulated genes in Weining and Tianzhu were likely involved in secondary metabolism pathways, especially carotenoid pathway, including PHYTOENE SYNTHASE, PHYTOENE DEHYDROGENASE, LYCOPENE ε-CYCLASE, CAROTENOID β-HYDROXYLASE and CAROTENOID CLEAVAGE DIOXYGENASE 1 genes, while most down-regulated genes played important roles in response to temperature and light radiation, such as heat shock proteins. Gene Ontology and MapMan analyses demonstrated that the DEGs among different environmental regions were significantly enriched in light reaction of photosystem II, response of stimulus and secondary metabolism, suggesting they played crucial roles in environmental adaptation and accumulation of aroma compounds in tobacco plants. Through comprehensive transcriptome comparison, we not only identified several stress response genes in tobacco leaves from different environmental regions but also highlighted the importance of carotenoid pathway genes for characteristics of aroma compounds in specific growing regions. Our study primarily laid the foundation for further understanding the molecular mechanism of environmental adaptation of tobacco plants and molecular regulation of aroma substances in tobacco leaves.
Project description:Comparative analysis of tobacco leaves transcriptomes unveils carotenoid pathway potentially determined the characteristics of aroma compounds in different environmental regions. Tobacco (Nicotiana tabacum) is a sensitive crop to environmental changes, and a tobacco with unique volatile aroma fractions always formed in specific ecological conditions. In order to investigate the differential expressed genes caused by environmental changes and reveal the formation mechanism of characteristics of tobacco in three different aroma tobacco regions of Guizhou Province, Agilent tobacco microarray was adapted for transcriptome comparison of tobacco leaves in medium aroma tobacco region Kaiyang and light aroma tobacco regions Weining and Tianzhu. Results showed that there was big difference among the gene expression profiles of tobacco leaves in different environmental conditions. A total of 517 differential expressed genes (DEGs) between Weining and Tianzhu were identified, while 733 and 1,005 genes differentially expressed between Longgang and another two tobacco regions Weining and Tianzhu, respectively. Compared with Longgang, up-regulated genes in Weining and Tianzhu were likely involved in secondary metabolism pathways, especially carotenoid pathway, including PHYTOENE SYNTHASE, PHYTOENE DEHYDROGENASE, LYCOPENE ε-CYCLASE, CAROTENOID β-HYDROXYLASE and CAROTENOID CLEAVAGE DIOXYGENASE 1 genes, while most down-regulated genes played important roles in response to temperature and light radiation, such as heat shock proteins. Gene Ontology and MapMan analyses demonstrated that the DEGs among different environmental regions were significantly enriched in light reaction of photosystem II, response of stimulus and secondary metabolism, suggesting they played crucial roles in environmental adaptation and accumulation of aroma compounds in tobacco plants. Through comprehensive transcriptome comparison, we not only identified several stress response genes in tobacco leaves from different environmental regions but also highlighted the importance of carotenoid pathway genes for characteristics of aroma compounds in specific growing regions. Our study primarily laid the foundation for further understanding the molecular mechanism of environmental adaptation of tobacco plants and molecular regulation of aroma substances in tobacco leaves. In order to investigate the differential expressed genes caused by environmental changes and reveal the formation mechanism of characteristics of tobacco in three different aroma tobacco regions of Guizhou Province, Agilent tobacco microarray was adapted for transcriptome comparison of tobacco leaves in medium aroma tobacco region Kaiyang and light aroma tobacco regions Weining and Tianzhu.
Project description:Tobacco exposure has been established to be a major risk factor for developing oral squamous cell carcinoma (OSCC). The purpose of this study is to identify potential biomarkers to distinguish the biological effectsof combustible tobacco products from that of non-combustible tobacco products using normal human gingival epithelial cells (HGEC), non-metastatic (101A) and metastatic (101B) OSCC cell lines.