Project description:<p>21-hydroxylase deficiency (21-OHD) is an inherited disorder that results from a mutation on the CYP21A2 gene. It affects the adrenal glands and is the most common cause of congenital adrenal hyperplasia (CAH). 21-OHD CAH causes the body to produce an insufficient amount of cortisol and an excess of androgen, the type of hormone that produces male characteristics. The primary treatment for 21-OHD CAH, glucocorticoid replacement therapy, has been shown to cause bone loss. However, the elevated hormone levels caused by 21-OHD CAH may increase production of the protein osteoprotegerin (OPG), which in turn may protect against bone loss. This study will compare bone density and OPG levels in women who have 21-OHD CAH and have undergone a lifetime of glucocorticoid replacement therapy to that in women who have neither of these criteria. In doing so, the study will aim to determine the relationship between OPG and bone loss.</p> <p>Because of the excess of androgen caused by 21-OHD CAH, women with CAH may exhibit some male-like characteristics. Glucocorticoids are a member of a class of drugs called corticosteroids, which are used in hormone replacement therapy. In order to counteract the effects of 21-OHD CAH, women with the disease are given hormone replacement therapy with glucocorticoids beginning at infancy. Glucocorticoids are known to cause bone loss. Despite many years of treatment with glucocorticoids, however, young women with 21-OHD CAH seem to be protected against bone loss. Researchers believe that the increased androgen levels in these women lead to increased estrogen levels, which in turn increase OPG production. The increase in OPG levels may protect women against bone loss. This study will evaluate bone density and OPG levels in women with and without 21-OHD CAH to determine the relationship between OPG and bone loss.</p> <p>Participants in this observational study will attend only one study visit. At this visit, they will undergo a blood draw; a scan of their lower spine, hip, and forearm; height and weight measurements; and a body fat analysis test. This last test will entail a weak and painless electrical signal being sent from foot to foot. Participants will not attend any follow-up visits for this study.</p>
Project description:abstract1: Glycogen storage disease type Ia (GSD Ia) is an inborn error of metabolism caused by defective glucose-6-phosphatase (G6PC) activity. GSD Ia patients exhibit severe hepatomegaly due to glycogen and triglyceride (TG) accumulation in the liver. We have previously shown that the activity of Carbohydrate Response Element Binding Protein (ChREBP), a key regulator of glycolysis and de novo lipogenesis, is increased in GSD Ia. In the current study we assessed the contribution of ChREBP to non-alcoholic fatty liver disease (NAFLD) development in a mouse model for hepatic GSD Ia. PMID : 32083759 Abstract2:Glycogen storage disease type 1a (GSD Ia) is an inborn error of metabolism caused by a defect in glucose-6-phosphatase (G6PC) activity, which induces severe hepatomegaly and increases the risk for liver cancer in patients. Hepatic GSD Ia is characterized by constitutive activation of Carbohydrate Response Element Binding Protein (ChREBP), a glucose-sensitive transcription factor that has been proposed as a pro-oncogenic molecular switch that supports tumour progression. Here we studied the contribution of ChREBP signalling on liver disease progression and tumour susceptibility in a mouse model for GSD Ia. Hepatocyte-specific G6pc knockout (L-G6pc-/-) mice were treated with AAV-shChREBP to normalize hepatic ChREBP activity. Hepatic ChREBP normalization induced dysplastic liver growth, massively increased hepatocyte size and sensitized to hepatic inflammation and liver fibrosis in GSD Ia mice. Furthermore, the nuclear levels of the oncoprotein YAP were increased and its transcriptional targets were induced in ChREBP normalized GSD Ia mice. Hepatic ChREBP normalization furthermore induced DNA damage and mitotic activity in GSD Ia mice, while chromosomal instability, cGAS-STING pathway, senescence, and hepatocyte dedifferentiation gene signatures emerged. Upon ChREBP silencing in immortalized human hepatocytes, on the other hand, the induction of YAP target gene expression was paralleled by cell cycle arrest, cell death, and reduced proliferation. In conclusion, our findings indicate that ChREBP activity limits hepatomegaly while protecting against liver disease progression and hepatocellular tumour induction in GSD Ia. These results underline the importance to establish the context-specific roles of ChREBP to define its therapeutic potential. PMID:37085901
Project description:Osteoporosis and bone fractures affect millions of men and women worldwide and are often due to increased bone resorption (bone loss) mediated by osteoclasts. Here, we identify a novel role for the cytoplasmic protein ELMO1 as an important ‘signaling node’ controlling the bone resorption function of osteoclasts. Initially, we noted association of ELMO1 SNPs with bone abnormalities and altered bone density in humans. Experimentally, ELMO1 emerged as a promoter of bone loss wherein deletion of ELMO1 reversed osteoporosis / bone erosions in four in vivo mouse models: osteoprotegerin deficiency, ovariectomy, and two types of inflammatory arthritis. However, ELMO1 did not promote bone loss under homeostatic conditions. Mechanistic studies pointed to a larger ELMO1 signaling network that regulates osteoclast activity at several levels. First, transcriptomics coupled with CRISPR/Cas9 genetic deletion approaches identified new regulators of osteoclast function associated with Elmo1. Second, defining the ‘ELMO1 interactome’ in osteoclasts via proteomics revealed proteins linked to bone degradation. Third, ELMO1 affects the formation of the actin ring /sealing zone on bone-like surfaces and the distribution of osteoclast-specific proteases. Finally, a 3D structure-based inhibitory peptide targeting a highly conserved region of ELMO1 reduced bone resorption in wild type osteoclasts. Collectively, these data identify ELMO1 as a signaling hub that regulates osteoclast function and bone loss, with relevance to diseases such as osteoporosis and arthritis.
Project description:Long-Term Outcome in Offspring and Mothers of Dexamethasone-Treated Pregnancies at Risk for Classical Congenital Adrenal Hyperplasia Owing to 21-Hydroxylase Deficiency - GSD 5610
Project description:Long-Term Outcome in Offspring and Mothers of Dexamethasone-Treated Pregnancies at Risk for Classical Congenital Adrenal Hyperplasia Owing to 21-Hydroxylase Deficiency - GSD 5610
Project description:Gonadal sex determining (GSD) genes that initiate fetal ovarian and testicular development and differentiation are expressed in the cells of the urogenital ridge that differentiate as somatic support cells (SSCs), i.e., granulosa cells of the ovary and Sertoli cells of the testis. To identify potential new mammalian GSD genes, we analyzed the gene expression differences between XX and XY SSCs cells isolated from the gonads of embryonic day (E) 13 mouse fetuses carrying an EGFP reporter transgene expressed specifically in SSCs. In addition, genome wide expression differences between XX and XY E13 whole gonads were examined. Newly identified differentially expressed transcripts are potential GSD genes involved in unexplained human sex reversal cases. Keywords: microarray, mouse fetal gonadal somatic support cells, sex determination
Project description:<p>Gallstones are crystalline deposits in the gallbladder that are traditionally classified as cholesterol, pigment or mixed stones based on their composition. Microbiota and host metabolism variances among the different types of gallstones remain largely unclear. Here, the bile and gallstone microbial species spectra of 29 subjects with gallstone disease (GSD, 24 cholesterol and 5 pigment) were revealed by type IIB restriction site-associated DNA microbiome sequencing (2bRAD-M). Among them (21 subjects: 18 cholesterol and 3 pigment), plasma samples were subjected to liquid chromatography-mass spectrometry (LC-MS) untargeted metabolomics. The microbiome yielded 896 species comprising 882 bacteria, 13 fungi, and 1 archaeon. Microbial profiling revealed significant enrichment of Cutibacterium acnes and Microbacterium sp005774735 in gallstone and Agrobacterium pusense and Enterovirga sp013044135 in the bile of cholesterol GSD subjects. The metabolome revealed 2296 metabolites, in which malvidin 3-(6''-malonylglucoside), 2-Methylpropyl glucosinolate and ergothioneine were markedly enriched in cholesterol GSD subjects. Metabolite set enrichment analysis (MSEA) demonstrated enriched bile acids biosynthesis in individuals with cholesterol GSD. Overall, the multi-omics analysis revealed that microbiota and host metabolism interaction perturbations differ depending on the disease type. Perturbed gallstone type-related microbiota may contribute to unbalanced bile acids metabolism in the gallbladder and host, representing a potential early diagnostic marker and therapeutic target for GSD.</p>