Project description:This project aims to investigate the metabolic pathways expressed by the active microbial community occurring at the deep continental subsurface. Subsurface chemoLithoautotrophic Microbial Ecosystems (SLiMEs) under oligotrophic conditions are supported by H2; however, the overall ecological trophic structures of these communities are poorly understood. Some deep, fluid-filled fractures in the Witwatersrand Basin, South Africa appear to support inverted trophic pyramids wherein methanogens contributing <5% of the total DNA apparently produce CH4 that supports the rest of the community. Here we show the active metabolic relationships of one such trophic structure by combining metatranscriptomic assemblies, metaproteomic and stable isotopic data, and thermodynamic modeling. Four autotrophic β-proteobacteria genera that are capable of oxidizing sulfur by denitrification dominate. They co-occur with sulfate reducers, anaerobic methane oxidizers and methanogens, which each comprises <5% of the total community. Defining trophic levels of microbial chemolithoautotrophs by the number of transfers from the initial abiotic H2-driven CO2 fixation, we propose a top-down cascade influence of the metabolic consumers that enhances the fitness of the metabolic producers to explain the inverted biomass pyramid of a multitrophic SLiME. Symbiotic partnerships are pivotal in the deep biosphere on and potentially beyond the Earth.
Project description:Marine microbial communities are critical for biogeochemical cycles and the productivity of ocean ecosystems. Primary productivity, at the base of marine food webs, is constrained by nutrient availability in the surface ocean, and nutrient advection from deeper waters can fuel photosynthesis. In this study, we compared the transcriptional responses by surface microbial communities after experimental deep water mixing to the transcriptional patterns of in situ microbial communities collected with high-resolution automated sampling during a bloom in the North Pacific Subtropical Gyre. Transcriptional responses were assayed with the MicroTOOLs (Microbiological Targets for Ocean Observing Laboratories) marine environmental microarray, which targets all three domains of life and viruses. The experiments showed that mixing of deep and surface waters substantially affects the transcription of photosystem and nutrient response genes among photosynthetic taxa within 24 hours, and that there are specific responses associated with the addition of deep water containing particles (organisms and detritus) compared to filtered deep water. In situ gene transcription was most similar to that in surface water experiments with deep water additions, showing that in situ populations were affected by mixing of nutrients at the six sampling sites. Together, these results show the value of targeted metatranscriptomes for assessing the physiological status of complex microbial communities.
Project description:Functional redundancy in bacterial communities is expected to allow microbial assemblages to survive perturbation by allowing continuity in function despite compositional changes in communities. Recent evidence suggests, however, that microbial communities change both composition and function as a result of disturbance. We present evidence for a third response: resistance. We examined microbial community response to perturbation caused by nutrient enrichment in salt marsh sediments using deep pyrosequencing of 16S rRNA and functional gene microarrays targeting the nirS gene. Composition of the microbial community, as demonstrated by both genes, was unaffected by significant variations in external nutrient supply, despite demonstrable and diverse nutrient–induced changes in many aspects of marsh ecology. The lack of response to external forcing demonstrates a remarkable uncoupling between microbial composition and ecosystem-level biogeochemical processes and suggests that sediment microbial communities are able to resist some forms of perturbation.
Project description:Functional redundancy in bacterial communities is expected to allow microbial assemblages to survive perturbation by allowing continuity in function despite compositional changes in communities. Recent evidence suggests, however, that microbial communities change both composition and function as a result of disturbance. We present evidence for a third response: resistance. We examined microbial community response to perturbation caused by nutrient enrichment in salt marsh sediments using deep pyrosequencing of 16S rRNA and functional gene microarrays targeting the nirS gene. Composition of the microbial community, as demonstrated by both genes, was unaffected by significant variations in external nutrient supply, despite demonstrable and diverse nutrient–induced changes in many aspects of marsh ecology. The lack of response to external forcing demonstrates a remarkable uncoupling between microbial composition and ecosystem-level biogeochemical processes and suggests that sediment microbial communities are able to resist some forms of perturbation. nirS gene diversity from two salt marsh experiments, GSM (4 treatments, 8 samples, duplicate arrays, four replicate blocks per array, 8 arrays per slide) and PIE (2 treatments, 16 samples, duplicate arrays four replicate blocks per array, 8 arrays per slide)
Project description:The increased urban pressures are often associated with specialization of microbial communities. Microbial communities being a critical player in the geochemical processes, makes it important to identify key environmental parameters that influence the community structure and its function.In this proect we study the influence of land use type and environmental parameters on the structure and function of microbial communities. The present study was conducted in an urban catchment, where the metal and pollutants levels are under allowable limits. The overall goal of this study is to understand the role of engineered physicochemical environment on the structure and function of microbial communities in urban storm-water canals. Microbial community structure was determined using PhyoChio (G3)
Project description:The response of soil microbial community to climate warming through both function shift and composition reorganization may profoundly influence global nutrient cycles, leading to potential significant carbon release from the terrain to the atmosphere. Despite the observed carbon flux change in northern permafrost, it remains unclear how soil microbial community contributes to this ecosystem alteration. Here, we applied microarray-based GeoChip 4.0 to investigate the functional and compositional response of subsurface (15~25cm) soil microbial community under about one year’s artificial heating (+2°C) in the Carbon in Permafrost Experimental Heating Research site on Alaska’s moist acidic tundra. Statistical analyses of GeoChip signal intensities showed significant microbial function shift in AK samples. Detrended correspondence analysis and dissimilarity tests (MRPP and ANOSIM) indicated significant functional structure difference between the warmed and the control communities. ANOVA revealed that 60% of the 70 detected individual genes in carbon, nitrogen, phosphorous and sulfur cyclings were substantially increased (p<0.05) by heating. 18 out of 33 detected carbon degradation genes were more abundant in warming samples in AK site, regardless of the discrepancy of labile or recalcitrant C, indicating a high temperature sensitivity of carbon degradation genes in rich carbon pool environment. These results demonstrated a rapid response of northern permafrost soil microbial community to warming. Considering the large carbon storage in northern permafrost region, microbial activity in this region may cause dramatic positive feedback to climate change, which is important and necessary to be integrated into climate change models.
Project description:The increased urban pressures are often associated with specialization of microbial communities. Microbial communities being a critical player in the geochemical processes, makes it important to identify key environmental parameters that influence the community structure and its function.In this proect we study the influence of land use type and environmental parameters on the structure and function of microbial communities. The present study was conducted in an urban catchment, where the metal and pollutants levels are under allowable limits. The overall goal of this study is to understand the role of engineered physicochemical environment on the structure and function of microbial communities in urban storm-water canals.
Project description:Understanding and quantifying the effects of environmental factors influencing the variation of abundance and diversity of microbial communities was a key theme of ecology. For microbial communities, there were two factors proposed in explaining the variation in current theory, which were contemporary environmental heterogeneity and historical events. Here, we report a study to profile soil microbial structure, which infers functional roles of microbial communities, along the latitudinal gradient from the north to the south in China mainland, aiming to explore potential microbial responses to external condition, especially for global climate changes via a strategy of space-for-time substitution. Using a microarray-based metagenomics tool named GeoChip 5.0, we showed that microbial communities were distinct for most but not all of the sites. Using substantial statistical analyses, exploring the dominant factor in influencing the soil microbial communities along the latitudinal gradient. Substantial variations were apparent in nutrient cycling genes, but they were in line with the functional roles of these genes. 300 samples were collected from 30 sites along the latitudinal gradient, with 10 replicates in every site
Project description:To effectively monitor microbial populations in acidic environments and bioleaching systems, a comprehensive 50-mer-based oligonucleotide microarray was developed based on most of the known genes associated with the acidophiles. This array contained 1,072 probes in which there were 571 related to 16S rRNA and 501 related to functional genes. Acid mine drainage (AMD) presents numerous problems to the aquatic life and surrounding ecosystems. However, little is known about the geographic distribution, diversity, composition, structure and function of AMD microbial communities. In this study, we analyzed the geographic distribution of AMD microbial communities from twenty sites using restriction fragment length polymorphism (RFLP) analysis of 16S rRNA genes, and the results showed that AMD microbial communities were geographically distributed and had high variations among different sites. Then an AMD-specific microarray was used to further analyze nine AMD microbial communities, and showed that those nine AMD microbial communities had high variations measured by the number of detected genes, overlapping genes between samples, unique genes, and diversity indices. Statistical analyses indicated that the concentrations of Fe, S, Ca, Mg, Zn, Cu and pH had strong impacts on both phylogenetic and functional diversity, composition, and structure of AMD microbial communities. This study provides insights into our understanding of the geographic distribution, diversity, composition, structure and functional potential of AMD microbial communities and key environmental factors shaping them. This study investigated the geographic distribution of Acid Mine Drainages microbial communities using a 16S rRNA gene-based RFLP method and the diversity, composition and structure of AMD microbial communities phylogenetically and functionally using an AMD-specific microarray which contained 1,072 probes ( 571 related to 16S rRNA and 501 related to functional genes). The functional genes in the microarray were involved in carbon metabolism (158), nitrogen metabolism (72), sulfur metabolism (39), iron metabolism (68), DNA replication and repair (97), metal-resistance (27), membrane-relate gene (16), transposon (13) and IST sequence (11).