Project description:<p>The data come from 40 studies participating in the Consortium of Investigators of Modifiers of BRCA1/2 (CIMBA). CIMBA recruits individuals with pathogenic mutations in BRCA1 or BRCA2. The majority of carriers were recruited through cancer genetics clinics offering genetic testing, and were enrolled into national or regional studies. The remainder were identified by population-based sampling of cases, or community recruitment. Eligibility to participate is restricted to carriers of pathogenic BRCA1/2 mutations who were 18 years or older at recruitment. Information collected included amongst other variables: age at recruitment; ages at breast and ovarian cancer diagnosis; and estrogen receptor (ER) status. Samples were genotyped using the Illumina OncoArray beadchip 500K SNP custom array. Details of the genotyping process and sample selection are included in Phelan et al, Identification of twelve new susceptibility loci for different histotypes of epithelial ovarian cancer, Nat Genet. 2017 May;49(5):680-691 <a href="https://www.ncbi.nlm.nih.gov/pubmed/?term=28346442" target="_blank"> (PMID:28346442)</a>, and Milne et al, Identification of ten variants associated with risk of estrogen receptor negative breast cancer, Nat Genet (in press). </p>
Project description:Inactivating germline BRCA1 and BRCA2 mutations confer a defect in homologous recombination DNA repair which was found to leave traces in tumor DNA copy number aberration (CNA) profiles. In analogy to previously trained breast cancer CNA classifiers that predicted association with BRCA1 and BRCA2 mutated cancer and benefit of high dose double strand break inducing chemotherapy, we trained BRCA1 and BRCA2 classifiers on CNA profiles of 50 BRCA1 mutated, 10 BRCA2 mutated and 13 non-familial ovarian cancers and investigated whether tumor type and mutation type independent classifiers could be trained. The cross validated area under the curve of the receiver/operator characteristic curve of ovarian cancer BRCA1 and BRCA2 classifiers were 0.67 (95% CI: 0.55-0.78) and 0.91 (95% CI: 0.79-1). These classifiers identified the majority of the samples with germline and somatic BRCA1 and BRCA2 mutations and BRCA1 promoter hypermethylation in the Cancer Genome Atlas (TCGA) dataset. Combining tumor type or mutated gene did not yield higher AUCs than single gene classifiers, although the ovarian BRCA1+BRCA2 classifier identified most BRCA1 and -2 mutated cases, including those in the TCGA dataset, and a combined breast and ovarian cancer BRCA1 classifier may improve response prediction to double strand break inducing chemotherapy.
Project description:This data was used to determine levels of BRCA1 and BRCA2 in primary human leukemia samples. Samples were determined to be high BRCA1 and/or BRCA2 or low BRCA1 and/or BRAC2. This data was used to determine levels of BRCA1 and BRCA2 in primary human leukemia samples. Samples were determined to be high BRCA1 and/or BRCA2 or low BRCA1 and/or BRAC2.
Project description:Kynureninase is a member of a large family of catalytically diverse but structurally homologous pyridoxal 5'-phosphate (PLP) dependent enzymes known as the aspartate aminotransferase superfamily or alpha-family. The Homo sapiens and other eukaryotic constitutive kynureninases preferentially catalyze the hydrolytic cleavage of 3-hydroxy-l-kynurenine to produce 3-hydroxyanthranilate and l-alanine, while l-kynurenine is the substrate of many prokaryotic inducible kynureninases. The human enzyme was cloned with an N-terminal hexahistidine tag, expressed, and purified from a bacterial expression system using Ni metal ion affinity chromatography. Kinetic characterization of the recombinant enzyme reveals classic Michaelis-Menten behavior, with a Km of 28.3 +/- 1.9 microM and a specific activity of 1.75 micromol min-1 mg-1 for 3-hydroxy-dl-kynurenine. Crystals of recombinant kynureninase that diffracted to 2.0 A were obtained, and the atomic structure of the PLP-bound holoenzyme was determined by molecular replacement using the Pseudomonas fluorescens kynureninase structure (PDB entry 1qz9) as the phasing model. A structural superposition with the P. fluorescens kynureninase revealed that these two structures resemble the "open" and "closed" conformations of aspartate aminotransferase. The comparison illustrates the dynamic nature of these proteins' small domains and reveals a role for Arg-434 similar to its role in other AAT alpha-family members. Docking of 3-hydroxy-l-kynurenine into the human kynureninase active site suggests that Asn-333 and His-102 are involved in substrate binding and molecular discrimination between inducible and constitutive kynureninase substrates.
Project description:Purpose: As estrogen receptor (ER)-positive breast cancer in BRCA1 mutation carriers arises at an older age with less aggressive tumor characteristics than ER negative BRCA1 mutated breast cancer, it has been suggested that these tumors are ?sporadic? and not BRCA1-driven. With the introduction of targeted treatments specific for tumors with a non-functioning BRCA1 or BRCA2 gene, the question whether the BRCA genes are impaired in the tumor, is highly relevant. Therefore, we performed genomic profiling of BRCA1-mutated ER+ tumors. Experimental design: Genomic profiling, BRCA1 promoter methylation assessment, and loss of heterozygosity analysis were done on 16 BRCA1-mutated ER+ tumors. Results were compared with 57 BRCA1-mutated ER- tumors, 36 BRCA2-mutated ER+ associated tumors, and 182 sporadic ER+ tumors [GSE9021, GSE9114, GSE16511, GSE50407]. Results: The genomic profile of BRCA1-mutated ER+ tumors was different from BRCA1-mutated ER- breast tumors, but highly similar to BRCA2-mutated ER+ tumors. In 83% of the BRCA1-mutated ER+ tumors, loss of the wildtype BRCA1 allele was observed. In addition, clinico-pathological variables in BRCA1-mutated ER+ cancer were also more similar to BRCA2-mutated ER+ and sporadic ER+ breast cancer than to BRCA1 mutated ER- cancers. Conclusions: As BRCA1-mutated ER+ tumors show a BRCAness copy number profile and LOH, it is likely that the loss of a functional BRCA1 protein plays a role in tumorigenesis in BRCA1-mutated ER+ tumors. Therefore, we hypothesize that these tumors are sensitive to drugs targeting the BRCA1 gene defect, providing new targeted treatment modalities for advanced BRCA-deficient, ER-positive breast cancer.
Project description:Purpose: As estrogen receptor (ER)-positive breast cancer in BRCA1 mutation carriers arises at an older age with less aggressive tumor characteristics than ER negative BRCA1 mutated breast cancer, it has been suggested that these tumors are ?sporadic? and not BRCA1-driven. With the introduction of targeted treatments specific for tumors with a non-functioning BRCA1 or BRCA2 gene, the question whether the BRCA genes are impaired in the tumor, is highly relevant. Therefore, we performed genomic profiling of BRCA1-mutated ER+ tumors. Experimental design: Genomic profiling, BRCA1 promoter methylation assessment, and loss of heterozygosity analysis were done on 16 BRCA1-mutated ER+ tumors. Results were compared with 57 BRCA1-mutated ER- tumors, 36 BRCA2-mutated ER+ associated tumors, and 182 sporadic ER+ tumors [GSE9021, GSE9114, GSE16511, GSE50407] Results: The genomic profile of BRCA1-mutated ER+ tumors was different from BRCA1-mutated ER- breast tumors, but highly similar to BRCA2-mutated ER+ tumors. In 83% of the BRCA1-mutated ER+ tumors, loss of the wildtype BRCA1 allele was observed. In addition, clinico-pathological variables in BRCA1-mutated ER+ cancer were also more similar to BRCA2-mutated ER+ and sporadic ER+ breast cancer than to BRCA1 mutated ER- cancers. Conclusions: As BRCA1-mutated ER+ tumors show a BRCAness copy number profile and LOH, it is likely that the loss of a functional BRCA1 protein plays a role in tumorigenesis in BRCA1-mutated ER+ tumors. Therefore, we hypothesize that these tumors are sensitive to drugs targeting the BRCA1 gene defect, providing new targeted treatment modalities for advanced BRCA-deficient, ER-positive breast cancer.