Project description:Context: Compared with European Americans, African Americans (AAs) are more insulin resistant, have a higher insulin secretion response to glucose, and develop type 2 diabetes more often. Molecular processes and/or genetic variations contributing to altered glucose homeostasis in high-risk AAs remain uncharacterized. Objective: Adipose and muscle transcript expression profiling and genotyping were performed in 260 AAs to identify genetic regulatory mechanisms associated with insulin sensitivity (SI). We hypothesized that: 1) transcription profiles would reveal tissue-specific modulation of physiologic pathways with SI, and 2) a subset of SI-associated transcripts would be controlled by DNA sequence variants as expression quantitative traits, and these variants in turn would be associated with SI. Design and Settings: The cross-sectional research study was performed in a clinical research unit. Participants: Unrelated nondiabetic AAs were recruited for the study. Main Outcome Measures: SI was measured by frequently sampled iv glucose tolerance test. Results: The expression levels of 2212 transcripts in adipose and 145 transcripts in muscle were associated with SI. Genes involved in eIF2, eIF4-p70S6K, and mTOR signaling were modulated with SI in both tissues. Genes involved in leukocyte extravasation signaling showed adipose-specific regulation, and genes involved in oxidative phosphorylation had discordant regulation between tissues. Intersecting cis-expression quantitative trait loci results with data from transcript-SI association analysis identified cis-regulatory single nucleotide polymorphisms for 363 and 42 SI-associated transcripts in adipose and muscle, respectively. Cis-eSNPs for three SI-associated adipose transcripts, NINJ1, AGA, and CLEC10A were associated with SI. Abrogation of NINJ1 induction in THP1 macrophages modulated expression of genes in chemokine signaling, cell adhesion, and angiogenesis pathways. Conclusion: This study identified multiple pathways associated with SI; particularly discordant tissue-specific regulation of the oxidative phosphorylation pathway, and adipose-specific regulation of transcripts in the leukocyte extravasation signaling pathway that seem to be important in insulin resistance. Identification of single nucleotide polymorphisms associated with SI and with modulation of expression of SI-associated transcripts, including NINJ1, reveals novel genetic regulatory mechanisms of insulin resistance in AAs.
Project description:Context: Compared with European Americans, African Americans (AAs) are more insulin resistant, have a higher insulin secretion response to glucose, and develop type 2 diabetes more often. Molecular processes and/or genetic variations contributing to altered glucose homeostasis in high-risk AAs remain uncharacterized. Objective: Adipose and muscle transcript expression profiling and genotyping were performed in 260 AAs to identify genetic regulatory mechanisms associated with insulin sensitivity (SI). We hypothesized that: 1) transcription profiles would reveal tissue-specific modulation of physiologic pathways with SI, and 2) a subset of SI-associated transcripts would be controlled by DNA sequence variants as expression quantitative traits, and these variants in turn would be associated with SI. Design and Settings: The cross-sectional research study was performed in a clinical research unit. Participants: Unrelated nondiabetic AAs were recruited for the study. Main Outcome Measures: SI was measured by frequently sampled iv glucose tolerance test. Results: The expression levels of 2212 transcripts in adipose and 145 transcripts in muscle were associated with SI. Genes involved in eIF2, eIF4-p70S6K, and mTOR signaling were modulated with SI in both tissues. Genes involved in leukocyte extravasation signaling showed adipose-specific regulation, and genes involved in oxidative phosphorylation had discordant regulation between tissues. Intersecting cis-expression quantitative trait loci results with data from transcript-SI association analysis identified cis-regulatory single nucleotide polymorphisms for 363 and 42 SI-associated transcripts in adipose and muscle, respectively. Cis-eSNPs for three SI-associated adipose transcripts, NINJ1, AGA, and CLEC10A were associated with SI. Abrogation of NINJ1 induction in THP1 macrophages modulated expression of genes in chemokine signaling, cell adhesion, and angiogenesis pathways. Conclusion: This study identified multiple pathways associated with SI; particularly discordant tissue-specific regulation of the oxidative phosphorylation pathway, and adipose-specific regulation of transcripts in the leukocyte extravasation signaling pathway that seem to be important in insulin resistance. Identification of single nucleotide polymorphisms associated with SI and with modulation of expression of SI-associated transcripts, including NINJ1, reveals novel genetic regulatory mechanisms of insulin resistance in AAs.
Project description:Obesity is a major risk factor for several chronic diseases including diabetes, fatty liver disease and cancer. Despite similar propensities for obesity, Hispanics and African Americans exhibit unique and distinct differences in obesity related outcomes such as greater risk of, obesity-related cancers in AA and non alcoholic fatty liver disease (NAFLD) in Hispanics. This study was aimed to determine whether differences in subcutaneous adipose tissue (SAT) gene expression in obese, Hispanic and AA young adults might explain ethnic differences in obesity-related phenotypes. cross-sectional study design to compare subcutaneous adipose tissue gene expression profiles of 19 Hispanic and 17 African American young adults
Project description:Accumulation of subcutaneous white adipose tissue (WAT) is associated with increased insulin sensitivity, low levels of inflammation and a generally metabolically-healthy state, whereas accumulation of visceral adipose tissue is associated with insulin resistance, adipose tissue inflammation and metabolic syndrome. Membrane Metallo-Endopeptidase (MME/Neprislyin) is an extracellular, membrane-bound protease enriched in subcutaneous WAT that can target degradation of a variety of peptides, including insulin, IL6, and β-amyloids. Here, we show that MME in white preadipocytes is differently expressed in subcutaneous vs visceral WAT, and favors insulin signaling and a low inflammatory response. Thus, knockdown of MME in preadipocytes increases the inflammatory response to substance P and amyloidβ aggregates. This is associated with increased basal insulin signaling and decreased insulin-stimulated signaling. Moreover, MME differentially regulates the internalization and turnover of the α/β subunits of the insulin receptor. Thus, MME is a novel regulator of the insulin receptor in adipose tissue and may serve as a therapeutic target to increase insulin sensitivity and decrease inflammatory susceptibility.
Project description:Accumulation of subcutaneous white adipose tissue (WAT) is associated with increased insulin sensitivity, low levels of inflammation and a generally metabolically-healthy state, whereas accumulation of visceral adipose tissue is associated with insulin resistance, adipose tissue inflammation and metabolic syndrome. Membrane Metallo-Endopeptidase (MME/Neprislyin) is an extracellular, membrane-bound protease enriched in subcutaneous WAT that can target degradation of a variety of peptides, including insulin, IL6, and β-amyloids. Here, we show that MME in white preadipocytes is differently expressed in subcutaneous vs visceral WAT, and favors insulin signaling and a low inflammatory response. Thus, knockdown of MME in preadipocytes increases the inflammatory response to substance P and amyloidβ aggregates. This is associated with increased basal insulin signaling and decreased insulin-stimulated signaling. Moreover, MME differentially regulates the internalization and turnover of the α/β subunits of the insulin receptor. Thus, MME is a novel regulator of the insulin receptor in adipose tissue and may serve as a therapeutic target to increase insulin sensitivity and decrease inflammatory susceptibility.
Project description:Background: African Americans (AA) have more pronounced insulin resistance and higher insulin secretion than European Americans (Caucasians or CA) when matched for age, gender, and body mass index (BMI). We hypothesize that physiological differences (including insulin sensitivity [SI]) between CAs and AAs can be explained by co-regulated gene networks in tissues involved in glucose homeostasis. Methods: We performed integrative gene network analyses of transcriptomic data in subcutaneous adipose tissue of 99 CA and 37 AA subjects metabolically characterized as non-diabetic, with a range of SI and BMI values. Results: Transcripts negatively correlated with SI in only the CA or AA subjects were enriched for inflammatory response genes and integrin-signaling genes, respectively. A sub-network (module) with TYROBP as a hub enriched for genes involved in inflammatory response (corrected p= 1.7E-26) was negatively correlated with SI (r= -0.426, p= 4.95E-04) in CA subjects. SI was positively correlated with transcript modules enriched for mitochondrial metabolism in both groups. Several SI-associated co-expressed modules were enriched for genes differentially expressed between groups. Two modules involved in immune response to viral infections and function of adherens junction, are significantly correlated with SI only in CAs. Five modules involved in drug/intracellular transport and oxidoreductase activity, among other activities, are correlated with SI only in AAs. Furthermore, we identified driver genes of these race-specific SI-associated modules. Conclusions: SI-associated transcriptional networks that were deranged predominantly in one ethnic group may explain the distinctive physiological features of glucose homeostasis among AA subjects.
Project description:Obesity is a major risk factor for several chronic diseases including diabetes, fatty liver disease and cancer. Despite similar propensities for obesity, Hispanics and African Americans exhibit unique and distinct differences in obesity related outcomes such as greater risk of, obesity-related cancers in AA and non alcoholic fatty liver disease (NAFLD) in Hispanics. This study was aimed to determine whether differences in subcutaneous adipose tissue (SAT) gene expression in obese, Hispanic and AA young adults might explain ethnic differences in obesity-related phenotypes.