Project description:CpG methylation analysis of MeDIP DNA using Agilent Human DNA methylation Microarray slides (G4495A, AMADID 023795) Using methylated DNA immunoprecipitation microarray (MeDIP-chip) and Agilent Human DNA methylation Microarray slides (G4495A, AMADID 023795) we report genomic methylation signatures of tissues resected from Mesial temporal epilepsy (MTLE) and Focal cortical dysplasia (FCD) type II patients undergoing surgery. Control samples were obtained from the non-epileptic post mortem cases without any brain pathology
Project description:Ion channel splice array data collected from temporal neocortex brain tissue collected from patients with mesial temporal lobe epilepsy. Temporal cortex samples from control subjects were compared to temporal neocortex of patients with mesial temporal lobe epilepsy
Project description:Ion channel splice array data from temporal cortex brain tissue samples collected from control subjects (no mesial temporal lobe epilepsy). Keywords: disease associated splicing changes Temporal cortex samples from control subjects were compared to temporal neocortex of patients with mesial temporal lobe epilepsy
Project description:Comparative analysis of gene expression differences (DEGs) between the amygdalohippocampal complex (most often the region of seizure onset in mesial temporal lobe epilepsy (mTLE)) and neocortex from mTLE patients who undergo epilepsy surgery can be used to illuminate pathophysiological events involved in epileptogenises. Transcriptome analysis was performed on freshly resected amygdalohippocampal and temporal lobe cortex tissue obtained after surgery of 17 patients with drug-resistant temporal lobe epilepsy from Copenhagen University Hospital.
Project description:Hippocampal sclerosis (HS) is the most common neuropathological finding of medically intractable cases of mesial temporal lobe epilepsy (MTLE), the most common form of partial epilepsy. Within the dentate gyrus, HS may be associated with granule cell dispersion and aberrant mossy fiber sprouting, and these pathological changes are accompanied by a range of molecular changes. In this study, we analyzed the gene expression profiles of dentate granule cells of MTLE patients with and without HS to show that next-generation sequencing methods can produce interpretable genomic data from RNA collected from small homogenous cell populations and to shed light on the transcriptional changes associated with HS. 12 samples of dentate granule cells from patients with mesial tempora lobe epilepsy, 5 with hippocampal sclerosis and 7 without hippocampal sclerosis. 10 samples had replicates.