Project description:We compared gene expression profiling of fibroblasts from individuals affected by Mucolipidosis type IV (MLIV) and healthy ones (AB). Keywords: Disease state analysis
Project description:<p>Mucolipidosis type IV (MLIV) is an autosomal recessive disorder typically characterized by severe psychomotor delay evident by the end of the first year of life and slowly progressive visual impairment during the first decade as a result of a combination of corneal clouding and retinal degeneration.</p> <p>The purpose of this research study is to look at the brain and eye in patients with mucolipidosis type IV (MLIV). MLIV is a lysosomal storage disease that primarily affects the brain and the eyes. The disease is caused by a defect in a gene called MCLON1 that makes a protein called mucolipin-1. Patients with MLIV do not make enough normal mucolipin. The disease begins early in life and the neurological problems seem to stabilize later in life. On the other hand, the eye abnormalities usually progresses over time. The exact course of the disease has not been determined, and until now, no study has addressed this question carefully.</p> <p>The research objectives are: <ol> <li>To learn about the natural history of cognitive function for individuals with mucolipidosis type IV.</li> <li>To measure brain volume over time in individuals with mucolipidosis type IV</li> </ol> </p> <p>This is an observational study of individuals with MLIV disorder. Those participating in this study will be evaluated annually for five years following a baseline visit.</p>
Project description:The hypothesis that male michrochimerism in eutopic endometrium is a factor for endometriosis, as indicated by indirect evidence was examined in endometrial samples from control (Group 1) and stage IV ovarian endometriosis (Group 2), either fertile (Group 1A and 2A) or Infertile (Group 1B and 2B) pateints. 6 coding and 10 non-coding genes showed bi-modal pattern of expression characterised by low expression in samples obtained from fertile patients and high expressions in infertile patients. Several coding and non-coding MSY-linked genes displayed michrochimerism in form of presence of their respective DNA inserts along with their microarray-detectable expression in endometrium irrespective of fertility history and disease.
Project description:We compared gene expression profiling of fibroblasts from individuals affected by Mucolipidosis type IV (MLIV) and healthy ones (AB). We directly compared MLIV indivisuals versus normal controls. A total of four technical replicate hybridizations were performed.
Project description:Kynureninase is a member of a large family of catalytically diverse but structurally homologous pyridoxal 5'-phosphate (PLP) dependent enzymes known as the aspartate aminotransferase superfamily or alpha-family. The Homo sapiens and other eukaryotic constitutive kynureninases preferentially catalyze the hydrolytic cleavage of 3-hydroxy-l-kynurenine to produce 3-hydroxyanthranilate and l-alanine, while l-kynurenine is the substrate of many prokaryotic inducible kynureninases. The human enzyme was cloned with an N-terminal hexahistidine tag, expressed, and purified from a bacterial expression system using Ni metal ion affinity chromatography. Kinetic characterization of the recombinant enzyme reveals classic Michaelis-Menten behavior, with a Km of 28.3 +/- 1.9 microM and a specific activity of 1.75 micromol min-1 mg-1 for 3-hydroxy-dl-kynurenine. Crystals of recombinant kynureninase that diffracted to 2.0 A were obtained, and the atomic structure of the PLP-bound holoenzyme was determined by molecular replacement using the Pseudomonas fluorescens kynureninase structure (PDB entry 1qz9) as the phasing model. A structural superposition with the P. fluorescens kynureninase revealed that these two structures resemble the "open" and "closed" conformations of aspartate aminotransferase. The comparison illustrates the dynamic nature of these proteins' small domains and reveals a role for Arg-434 similar to its role in other AAT alpha-family members. Docking of 3-hydroxy-l-kynurenine into the human kynureninase active site suggests that Asn-333 and His-102 are involved in substrate binding and molecular discrimination between inducible and constitutive kynureninase substrates.
Project description:As the evolution of miRNA genes has been found to be one of the important factors in formation of the modern type of man, we performed a comparative analysis of the evolution of miRNA genes in two archaic hominines, Homo sapiens neanderthalensis and Homo sapiens denisova, and elucidated the expression of their target mRNAs in bain.A comparative analysis of the genomes of primates, including species in the genus Homo, identified a group of miRNA genes having fixed substitutions with important implications for the evolution of Homo sapiens neanderthalensis and Homo sapiens denisova. The mRNAs targeted by miRNAs with mutations specific for Homo sapiens denisova exhibited enhanced expression during postnatal brain development in modern humans. By contrast, the expression of mRNAs targeted by miRNAs bearing variations specific for Homo sapiens neanderthalensis was shown to be enhanced in prenatal brain development.Our results highlight the importance of changes in miRNA gene sequences in the course of Homo sapiens denisova and Homo sapiens neanderthalensis evolution. The genetic alterations of miRNAs regulating the spatiotemporal expression of multiple genes in the prenatal and postnatal brain may contribute to the progressive evolution of brain function, which is consistent with the observations of fine technical and typological properties of tools and decorative items reported from archaeological Denisovan sites. The data also suggest that differential spatial-temporal regulation of gene products promoted by the subspecies-specific mutations in the miRNA genes might have occurred in the brains of Homo sapiens denisova and Homo sapiens neanderthalensis, potentially contributing to the cultural differences between these two archaic hominines.