Project description:Cladobotryum mycophilum, the causative agent of cobweb disease on Agaricus bisporus results in significant crop losses for mushroom growers worldwide. Cobweb disease is treated through strict hygiene control methods and the application of chemical fungicides but an increase in fungicide resistant Cladobotryum strains has resulted in a need to develop alternative biocontrol treatment methods. The aim of the work presented here was to evaluate the response of C. mycophilum to a Bacillus velezensis isolate to assess its potential as a novel biocontrol agent. Exposure of 48 hr C. mycophilum cultures to 25% v/v 96h B. velezensis culture filtrate resulted in a 57% reduction in biomass (P < 0.0002), a disruption in hyphal structure and morphology, and the appearance of aurofusarin in culture medium. Proteomic analysis of B. velezensis culture filtrate revealed the presence of peptidase 8 (subtilisin), peptide deformylase and probable cytosol aminopeptidase which are known to induce cell disruption. Characterisation of the proteomic response of C. mycophilum following exposure to B. velezensis culture filtrate revealed an increase in the abundance of a variety of proteins associated with stress response (ISWI chromatin-remodelling complex ATPase ISW2 (+24 fold), carboxypeptidase Y precursor (+3 fold) and calmodulin (+2 fold). There was also a decrease in the abundance of proteins associated with transcription (40S ribosomal protein S30 (-26 fold), 40S ribosomal protein S21 (-3 fold) and carbohydrate metabolism, (L-xylulose reductase (-10 fold). The results presented here indicate that B. velezensis culture filtrate is capable of inhibiting the growth of C. mycophilum and inducing a stress response, thus indicating its potential to control this important pathogen of mushrooms.
Project description:Lecanicillium fungicola, the causative agent of dry bubble disease on Agaricus bisporus results in significant crop losses for mushroom growers worldwide. Dry bubble disease is treated through strict hygiene control methods and the application of chemical fungicides but an increase in fungicide resistant L. fungicola strains has resulted in a need to develop alternative biocontrol treatment methods. The aim of the work presented here was to evaluate the response of L. fungicola to a Bacillus velezensis isolate to assess its potential as a novel biocontrol agent. The bacterial species in Serenade, a commercially available biocontrol treatment was also included in this analysis. Exposure of 48 hr L. fungicola cultures to 25% v/v 96h B. velezensis culture filtrate resulted in a 45% reduction in biomass (P < 0.0002) and a disruption in hyphal structure and morphology. Characterisation of the proteomic response of L. fungicola following exposure to B. velezensis culture filtrate revealed an increase in the abundance of a variety of proteins associated with stress response (Norsolorinic acid reductase (+8 fold), isocitrate lyase (+7 fold) and MMS19 nucleotide excision repair protein (+4 fold). There was also a decrease in the abundance of proteins associated with transcription (40S ribosomal protein S30 (-33 fold), 60S ribosomal protein L5 (-45 foldThe results presented here indicate that B. velezensis culture filtrate is capable of inhibiting the growth of L. fungicola and inducing a stress response, thus indicating its potential to control this important pathogen of mushrooms.
Project description:To explore the adaptive strategies of wheat in response to beneficial, pathogenic and combined microorganisms, we performed the first comprehensive proteomic and in wheat roots after exposure to Bacillus velezensis CC09, Gaeumannomyces graminis var. tritici and their combined colonization, respectively.