Project description:The purpose of this study is to determine whether the presence of pathogenic Escherichia coli in colon is associated with psychiatric disorders.
Project description:Despite the characterization of many aetiologic genetic changes. The specific causative factors in the development of sporadic colorectal cancer remain unclear. This study was performed to detect the possible role of Enteropathogenic Escherichia coli (EPEC) in developing colorectal carcinoma.
Project description:Investigation of whole genome gene expression level changes in a Escherichia coli MG1655 K-12 ∆arcA mutant, compared to the wild-type strain. The mutations engineered into this strain produce a strain lacking the ArcA protein. The results are further described in the manuscript The response regulator ArcA uses a diverse binding site architechture to globally regulate carbon oxidation in E. coli
Project description:We obtained pfkAB-deleted E. coli K-12 MG1655 strain that can thrive on glucose minimal medium with adaptive laboratory evolution (pfk_ALE-1 strain). Functional analysis of the mutations detected in the pfk_ALE-1 strain was conducted to elucidate the molecular mechanisms underlying the effects of these mutations. We performed transcriptome analysis with RNA-seq to investigate the transcriptomic effects of mutations involved in the glycolytic pathway and global transcriptional regulation. Transcriptomic analysis revealed the expression levels of 4,497 genes on the chromosome of MG1655 and ALE-1 strains.
Project description:We report the effect of oxygenation state in lactose grown escherichia coli producing recombinant proteins. To shed more light on the mechanistic correlation between the uptake of lactose and dissolved oxygen, a comprehensive study has been undertaken with the E. coli BL21 (DE3) strain. Differences in consumption pattern of lactose, metabolites, biomass and product formation due to aerobiosis have been investigated. Transcriptomic profiling of metabolic changes due to aerobic process and microaerobic process during protein formation phase has been studied and the results provide a deeper understanding of protein production in E. coli BL21 (DE3) strains with lactose based promoter expression systems.This study also provides a scientific understanding of escherichia coli metabolism upon oxygen fluctuations.
Project description:An assortment of genetically engineered Escherichia coli strains of the rewired gene regulation were used to study whether the cells could adapt to the environmental changes without the evolved gene regulatory machinaries. These E. coli strains had a synthetic gene circuit comprising a rewried gene that natively located within the His opeon. The cells growing under histidine supplied or depleted conditions were subjected to the macrioarray analysis. Multilevel analyses were performed to evaluate the global reorganization of gene expression in response to histidine depletion. A common pattern in transcriptome was observed in the adpative cells, indicating a survival strategy of "stochastic adaptation with regular transcriptome reorganization".
Project description:Investigation of whole genome gene expression level changes in a Escherichia coli MG1655 K-12 ?fnr mutant, compared to the wild-type strain. The mutations engineered into this strain produce a strain lacking the FNR protein. WT strains were grown under aerobic and anaerobic growth conditions.
Project description:The present study investigated the role(s) of RNase I (encoded by the rna gene) in Escherichia coli by comparative gene expression analysis of an rna mutant and the isogenic wild-type E. coli strain BW25113. The transcriptomic analysis aims to provide mechanistic insight into aberrant phenotypes observed in the RNase I-deficient mutant.
Project description:Transcriptome analysis plays a central role in elucidating the complexity of gene expression regulation in Escherichia coli. By analyzing the transcriptomics of E. coli treated with water, acetone, and Cinnamomum camphora essential oil, the inhibitory mechanism of the essential oil on the human intestinal microbe was studied. The results showed that the inhibitory effect of the essential oil on E. coli increased with an increase in concentration; 1/4 minimum inhibitory concentration was the reaction equilibrium point. RNAseq transcriptomic comparison indicated that the essential oil inhibited the growth of E. coli by inhibiting the metabolism, chemotaxis, and some resistance reactions of them, while E. coli maintained its life activities by enhancing its resistance reactions. These results are of great importance to the study of the medical use of C. camphor essential oil and gene regulation in E. coli under stress conditions.