Project description:BRAF(V600E) mutant melanomas treated with inhibitors of the BRAF and MEK kinases almost invariably develop resistance, which is frequently caused by reactivation of the Mitogen Activated Protein Kinase (MAPK) pathway. To identify novel treatment options for such patients, we searched for acquired vulnerabilities of MAPK inhibitor-resistant melanomas. We find that resistance to BRAF+MEK inhibitors is associated with increased levels of reactive oxygen species (ROS). Subsequent treatment with the histone deacetylase inhibitor (HDACi) vorinostat represses SLC7A11 that leads to a lethal increase in the already elevated levels of ROS in drug-resistant cells, thereby causing selective apoptotic death of only the drug resistant tumor cells. Consistently, treatment of BRAF inhibitor-resistant melanoma with HDACi in mice results in a dramatic tumor regression. In a study in patients with advanced BRAF+MEK inhibitor resistant melanoma, we find that HDACi can selectively ablate drug-resistant tumor cells, providing clinical proof of concept for the novel therapy identified here. DNA Seq data: biopy samples from patients pre- and post- treated with Vorinostat; check mutations related to MAPKi-resistance
Project description:11 BRAF inhibitor resistance melanoma cells were treated with PAK inhibitor PF3758309 for 48 hr, the cell lysis were analyzed by RPPA profiling by protein array (RPPA)
Project description:3 BRAF/MEK inhibitor resistance melanoma cells were treated with PAK inhibitor PF3758309 for 48 hr, the cell lysis were analyzed by RPPA profiling by protein array (RPPA)
Project description:Rapid resistance to BRAF inhibitors in BRAFV600-mutant metastatic melanoma has produced an urgent need for new treatment options. BRAF inhibitor resistance commonly involves reactivation of mitogen-activated protein kinase (MAPK) signaling and yet inhibition of downstream kinases has not circumvented resistance, partly because MAPK is regulated via a complex network of feedback mechanisms that influence pathway rebound. To examine the transcriptome responses of melanoma cells to MAPK inhibition, a panel of 11 BRAFV600-mutant melanoma cell lines were treated with control (DMSO), 100nM dabrafenib alone (i.e BRAF inhibitor monotherapy) or 100nM dabrafenib + 10nM trametinib (i.e combination BRAF + MEK inhibition) for 24h.
Project description:BRAF(V600E) mutant melanomas treated with inhibitors of the BRAF and MEK kinases almost invariably develop resistance, which is frequently caused by reactivation of the Mitogen Activated Protein Kinase (MAPK) pathway. To identify novel treatment options for such patients, we searched for acquired vulnerabilities of MAPK inhibitor-resistant melanomas. We find that resistance to BRAF+MEK inhibitors is associated with increased levels of reactive oxygen species (ROS). Subsequent treatment with the histone deacetylase inhibitor (HDACi) vorinostat represses SLC7A11 that leads to a lethal increase in the already elevated levels of ROS in drug-resistant cells, thereby causing selective apoptotic death of only the drug resistant tumor cells. Consistently, treatment of BRAF inhibitor-resistant melanoma with HDACi in mice results in a dramatic tumor regression. In a study in patients with advanced BRAF+MEK inhibitor resistant melanoma, we find that HDACi can selectively ablate drug-resistant tumor cells, providing clinical proof of concept for the novel therapy identified here.
Project description:Increased MITF expression contributes to melanoma progression and resistance to BRAF pathway inhibition. We show that, unexpectedly, lack of MITF is associated with more severe resistance to a range of inhibitors. Indeed, the presence of endogenous MITF was essential for robust drug responses. Both in primary and acquired resistance, MITF levels inversely correlated with expression of several activated receptor tyrosine kinases, most commonly AXL. The MITF-low/AXL-high/drug resistance phenotype was seen in roughly half of BRAF mutant and the majority of NRAS mutant melanoma cell lines. The dichotomous behavior of MITF in drug response was corroborated in vemurafenib-resistant biopsies, including MITF high and low clones in a relapsed patient. Drug cocktails containing AXL inhibitor enhanced melanoma cell elimination by BRAF or ERK inhibition. Our results demonstrate that a low MITF/AXL ratio predicts early resistance to multiple targeted drugs, and warrant clinical validation of AXL inhibitors to combat resistance of BRAF and NRAS mutant MITF-low melanomas. Experssion analysis by RNAseq of 14 melanoma cell lines.
Project description:Melanoma is an aggressive skin cancer with increasing incidence worldwide. The development of BRAF kinase inhibitors as targeted treatments for patients with BRAF-mutant tumours contributed profoundly to an improved overall survival of patients with metastatic melanoma. Despite these promising results, the emergence of rapid resistance to targeted therapy remains a serious clinical issue. To investigate the impact of BRAF inhibitors on miRNomes and transcriptomes, we used in vitro melanoma models consisting of BRAF inhibitor-sensitive and -resistant cell lines generated in our laboratory. miRNA and gene expression were assessed by microarray analyses of the BRAF inhibitor sensitive melanoma cells A375, IGR37, and 501Mel, as well as on the vemurafenib (PLX4032) - resistant cells A375_XP, IGR37_XP, 501Mel_XP, and dabrafenib (GSK2118436) - resistant cells A375_GP, IGR37_GP, 501Mel_GP. For each cell line the microarray experiment was performed in duplicates.
Project description:Melanoma is an aggressive skin cancer with increasing incidence worldwide. The development of BRAF kinase inhibitors as targeted treatments for patients with BRAF-mutant tumours contributed profoundly to an improved overall survival of patients with metastatic melanoma. Despite these promising results, the emergence of rapid resistance to targeted therapy remains a serious clinical issue. To investigate the impact of BRAF inhibitors on miRNomes and transcriptomes, we used in vitro melanoma models consisting of BRAF inhibitor-sensitive and -resistant cell lines generated in our laboratory. miRNA and gene expression were assessed by microarray analyses of the BRAF inhibitor sensitive melanoma cells A375, IGR37, and 501Mel, as well as on the vemurafenib (PLX4032) - resistant cells A375_XP, IGR37_XP, 501Mel_XP, and dabrafenib (GSK2118436) - resistant cells A375_GP, IGR37_GP, 501Mel_GP. For each cell line the microarray experiment was performed in duplicates.
Project description:The activation of transcriptional coactivators YAP and its paralog TAZ has been shown to promote resistance to anti-cancer therapies. YAP/TAZ activity is tightly coupled to actin cytoskeleton architecture. However, the influence of actin remodeling on cancer drug resistance remains largely unexplored. Here, we report a pivotal role of actin remodeling in YAP/TAZ-dependent BRAF inhibitor resistance in BRAF V600E mutant melanoma cells. Melanoma cells resistant to BRAF inhibitor PLX4032 exhibit an increase in actin stress fiber formation, which appears to promote the nuclear accumulation of YAP/TAZ. Knockdown of YAP/TAZ overcomes PLX4032 resistance, whereas overexpression of constitutively active YAP induces resistance. Moreover, inhibition of actin polymerization and cytoskeletal tension in melanoma cells suppresses both YAP/TAZ activation and PLX4032 resistance. Our siRNA library screening identifies actin dynamics regulator TESK1 as a novel vulnerable point of the YAP/TAZ-dependent resistance pathway. These results suggest that inhibition of actin remodeling is a promising synthetic lethal strategy to suppress resistance in BRAF inhibitor therapies.